Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1583-1594    https://doi.org/10.11896/cldb.18030168
  高分子与聚合物基复合材料 |
对氟离子呈现状态和比色响应的有机凝胶的研究进展
韦学玉1, 杨晓凡2, 白炳莲3, 徐晓平1, 李济源1, 刘志刚4
1.安徽工程大学建筑工程学院,芜湖 241000;
2.安徽工程大学生物与化学工程学院,芜湖 241000;
3.吉林大学物理学院,长春 130012;
4.宁波市自来水有限公司,宁波 315041
Advances in Organogels with State and Colorimetric Response to Fluoride
WEI Xueyu1, YANG Xiaofan2, BAI Binglian3, XU Xiaoping1, LI Jiyuan1, LIU Zhigang4
1.School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000;
2.College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000;
3.College of Physics, Jilin University, Changchun 130012;
4.Ningbo Water Supply Co. Ltd., Ningbo 315041
下载:  全 文 ( PDF ) ( 2445KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氟离子刺激响应的有机凝胶因子通过氢键识别或复合氟离子,使紫外吸收波长红移而发生颜色变化,实现比色响应;同时破坏凝胶形成的主要驱动力,诱导凝胶-溶胶转变,实现状态响应。能够响应外界氟离子刺激的有机凝胶在氟离子检测方面表现出明显的优势,具有方便快捷的肉眼检测效果,并且可以实现氟离子对准固体的检测,因此,具有氟离子刺激响应性的小分子有机凝胶受到人们越来越多的关注。
文献报道较多的氟离子响应有机凝胶只能对氟离子刺激呈现状态响应,即氟离子加入能够诱导凝胶-溶胶转变,却不能诱导体系颜色变化;或者只能对氟离子刺激呈现比色响应,即氟离子加入能够诱导体系颜色变化,却不能诱导凝胶-溶胶转变。而对氟离子具有双重响应性的有机凝胶在氟离子探测方面具有更明显的优势,可以同时表现出肉眼可见的状态响应(凝胶-溶胶)和比色响应(颜色变化)。
目前为止,对氟离子具有双重响应性的有机凝胶已经有一些报道。研究较多的是氢键型有机凝胶,凝胶因子中含有酰胺、酰腙、脲、酰肼等官能团,分子间氢键相互作用是凝胶形成的主要驱动力。由于氟离子有很强的电负性,能够与凝胶因子上的氢质子复合或发生去质子化,从而导致凝胶的破坏或颜色变化。因此,氟离子的响应机理基本上都是氢键相互作用和去质子化过程。但是凝胶因子与氟离子具体的响应过程千差万别,不仅与凝胶因子提供的氢键类型有直接关系,还与凝胶因子中的共轭基团、取代基性质和位置等有关。因此有必要对氟离子响应有机凝胶进行系统总结。
基于此,结合本课题组近期对氟离子响应有机凝胶的研究结果,对近年来文献报道的有关氟离子刺激响应的有机凝胶体系, 重点是近年来文献报道的对氟离子同时表现出肉眼可见的状态和比色响应的有机凝胶体系进行综述, 以期为新型氟离子响应有机凝胶体系的分子设计提供一些参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦学玉
杨晓凡
白炳莲
徐晓平
李济源
刘志刚
关键词:  有机凝胶  氟离子  状态响应  比色响应  凝胶-溶胶转变    
Abstract: The fluoride-responsive organogels, the recognization and combination of the gelators with fluoride anions through hydrogen bonding will induce the red shift of UV absorption wavelength and then the change of color, realizing the colorimetric response. At the same time, the main driving force of gel formation is destroyed, and the gel-sol transition is induced to achieve the state response. The fluoride-responsive organogels capable of responding to external fluoride anions show obvious advantages in fluoride anion detection, because the convenient and quick detection by naked eyes, and the detection of fluoride anions to quasi solid can be realized. Therefore, the fluoride-responsive organogels have attracted more and more attention.
It has been reported that many fluoride-responsive organogels only hold single response mode to fluoride anions. Specifically speaking, the addition of fluoride anions can only induce the gel-sol transition and fail to induce color change of the system, or it only bring about color change of the system rather than the gel-sol transition. Accordingly, the fluoride-responsive organogels capable of both response modes, namely presenting gel-sol transition and color changes, to fluoride anions are superior in fluoride detection.
Up to now, the researches on fluoride-responsive organogels with dual response modes to fluoride anions have been reported. Most researches focus on organogels based on intermolecular hydrogen bonding, their gelators contain functional groups like amide, hydrazone, urea, hydrazine, and so forth, and the main driving force for the formation of organogels lies in intermolecular hydrogen bonding interaction. Thanks to the strong electronegativity of fluoride anions, the deprotonation of gelators will take place, resulting in the destruction or color change of the organogels. Consequently, the response mechanism of fluorine ions primarily consists of hydrogen bonding interaction and deprotonation process. However, the responsive process of fluoride anions and gelators are quite different in various systems, which is not only directly related to the type of hydrogen bond provided by the gelators, but also affected by the conjugated groups, the nature and location of the substituents. Therefore, a comprehensive summary concerning the fluorine-responsive organogels is necessary.
Based on this, combining with the recent research results of our group on fluoride-responsive organogels, we summarize the fluoride-responsive organogels reported in the literatures in recent years, especially the organogel systems which showed both reversible color change and gel-sol transition by fluoride anions stimuli, for the sake of providing some references for molecular design of the organogels with fluoride anions response.
Key words:  organogel    fluorine anion    state-response    colorimetric-response    gel-sol transition
                    发布日期:  2019-05-10
ZTFLH:  O621  
基金资助: 吉林省自然科学基金(20170101112JC);安徽工程大学国家自然科学基金预研项目(zryy1310);安徽省自然科学基金(1808085ME133);安徽高校自然科学基金重点项目(KJ2017A119)
通讯作者:  baibinglian@jlu.edu.cn   
作者简介:  韦学玉,安徽工程大学建筑工程学院教师,2007年硕士毕业于宁夏大学。曾主持和参与省部级项目3项,公开发表研究论文十余篇。白炳莲,吉林大学物理学院教授。2007年博士毕业于吉林大学材料科学与工程学院。已发表SCI论文70余篇,目前主要从事刺激响应超分子凝胶研究。
引用本文:    
韦学玉, 杨晓凡, 白炳莲, 徐晓平, 李济源, 刘志刚. 对氟离子呈现状态和比色响应的有机凝胶的研究进展[J]. 材料导报, 2019, 33(9): 1583-1594.
WEI Xueyu, YANG Xiaofan, BAI Binglian, XU Xiaoping, LI Jiyuan, LIU Zhigang. Advances in Organogels with State and Colorimetric Response to Fluoride. Materials Reports, 2019, 33(9): 1583-1594.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030168  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1583
1 Padie C, Zeitler K. New Journal of Chemistry,2011,35,994.
2 Ren J, Wu Z, Zhou Y, et al. Dyes and Pigments,2011,91,442.
3 Gai L Z, Chen H C, Zou B, et al. Chemical Communication,2012,48,10721.
4 Buckland D, Bhosale S V, Langford S J. Tetrahedron Letter,2011,52,1990.
5 He X M, Hu S Z, Liu K, et al. Organic Letter,2006,8,333.
6 Cho E J, Ryu B J, Lee Y J, et al. Organic Letter,2005,7,2607.
7 Esteban-Gómez D, Fabbrizzi L, Licchelli M. Journal of Organic Chemistry,2005,70,5717.
8 Vázquez M, Fabbrizzi L, Taglietti A, et al. Angewandte Chemie International Edition,2004,43,1962.
9 Jose D A, Kumar D K, Ganguly B, et al. Organic Letter,2004,6,3445.
10 Mizuno T, Wei W H, Eller L R, et al. Journal of the American Chemical Society,2002,124,1134.
11 Woods J C, Camiolo S, Light M E, et al. Journal of the American Chemical Society,2002,124,86442.
12 Cho E J, Moon J W, Ko S W, et al. Journal of the American Chemical Society,2003,125,12376.
13 Lee J Y, Cho E J, Mukamel S, et al. Journal of Organic Chemistry,2004,69,943.
14 Liu B, Tian H. Chemistry Letters,2005,34,686.
15 Boiocchi M, Boca L D, Gómez D E, et al. Journal of the American Che-mical Society,2004,126,16507.
16 Zhao Y, Li Y, Qin Z, et al. Dalton Transactions,2012,41,13338.
17 Zhou Y, Zhang J, Yoon J. Chemical Reviews,2014,114,5511.
18 Santos-Figueroa L E, Moragues M E, Climent A, et al. Chemical Society Reviews,2013,42,3489.
19 Parthiban C, Elango K P. Sensors & Actuators B: Chemical,2015,215,544.
20 Chowdhury A R, Ghosh P, Roy B G, et al. Sensors & Actuators B: Chemical,2015,220,347.
21 Wang L, Fang G, Cao D. Sensors & Actuators B: Chemical,2015,221,63.
22 Biswas S, Gangopadhyay M, Barman S, et al. Sensors & Actuators B: Chemical,2016,222,823.
23 Fu Y, Fan C, Liu G, et al. Sensors & Actuators B: Chemical,2017,239,295.
24 Nemati M, Hosseinzadeh R, Zadmard R, et al. Sensors & Actuators B: Chemical,2017,241,690.
25 Chowdhury A R, Roy B G, Jana S, et al. Sensors & Actuators B: Chemical,2017,241,706.
26 Nie L, Zhang Q, Hu L, et al. Sensors & Actuators B: Chemical,2017,245,314.
27 Parthiban C, Elango K P. Sensors & Actuators B: Chemical,2017,245,321.
28 Sessler J L, Cho D G, Lynch V. Journal of the American Chemical Society,2006,128,16518.
29 Shiraishi Y, Maehara H, Hirai T. Organic & Biomolecular Chemistry,2009,7,2072.
30 Tu T, Fang W, Sun Z. Advanced Materials,2013,25,5304.
31 Maeda H. Chemistry—A European Journal,2008,14,11274.
32 Yang X, Zhang G, Zhang D. Journal of Materials Chemistry,2012,22,38.
33 Terech P, Weiss R G. Chemical Reviews,1997,97,3133.
34 Jones C D, Steed J W. Chemical Society Reviews,2016,45,6546.
35 Yang H, Yi T, Zhou Z, et al. Langmuir,2007,23,8224.
36 Lloyd G O, Piepenbrock M O M, Foster J A, et al. Soft Matter,2012,8,204.
37 Yamanaka M, Nakamura T, Nakagawa T, et al. Tetrahedron Letter,2007,48,8990.
38 Teng M, Kuang G, Jia X, et al. Journal of Materials Chemistry,2009,19,5648.
39 Xu D, Liu X, Lu R, et al. Organic & Biomolecular Chemistry,2011,9,1523.
40 Liu C, Su M, Li X, et al. Soft Matter,2015,11,5727.
41 Baddi S, Palanisamy A. Sensors & Actuators B: Chemical,2017,245,711.
42 Ren Y Y, Xu Z, Li G Q, et al. Dalton Transactions,2017,46,333.
43 Wang C, Zhang D, Zhu D. Langmuir,2007,23,1478.
44 Lin Q, Zhu X, Fu Y, et al. Soft Matter,2014,10,5715.
45 Lin Q, Zhu X, Fu Y, et al. Dyes and Pigments,2015,113,748.
46 Džolicć Z, Cametti M, Cort A D, et al. Chemical Communication,2007,34,3535.
47 Wang S, Shen W, Feng Y, et al. Chemical Communication,2006,14,1497.
48 Zhang Y, Jiang S. Organic & Biomolecular Chemistry,2012,10,6973.
49 Xue P, Zhang Y, Jia J, et al. Soft Matter,2011,7,8296.
50 Xue P, Lu R, Jia J, et al. Chemistry—A European Journal,2012,18,3549.
51 Xue P, Sun J, Xu Q, et al. Organic & Biomolecular Chemistry,2013,11,1840.
52 Geng L, Feng G, Wang S, et al. Journal of Fluorine Chemistry,2015,170,24.
53 Zhang X, Lee S, Liu Y, et al. Scientific Reports,2014,4,4593.
54 Kim T H, Kwon N Y, Lee T S. Tetrahedron Letter,2010,51,5596.
55 Rajamalli P, Prasad E. Organic Letter,2011,13,3714.
56 Rajamalli P, Prasad E. Soft Matter,2012,8,8896.
57 Rajamalli P, Prasad E. Langmuir,2013,29,1609.
58 Wei J, Chai Q, He L, et al. Tetrahedron,2016,72,3073.
59 Zhang Y, Lin Q, Wei T, et al. Chemical Communication,2009,40,6074.
60 Ghosh K, Pati C. Tetrahedron Letter,2016,57,5469.
61 Yu X, Xie D, Li Y, et al. Sensors & Actuators B: Chemical,2017,251,828.
62 Kim T H, Choi M S, Sohn B, et al. Chemical Communication,2008,20,2364.
63 Ghosh K, Kar D. Organic & Biomolecular Chemistry,2012,10,8800.
64 Liu J, Yang Y, Chen C, et al. Langmuir,2010,26,9040.
65 Mehdi H, Pang H, Gong W, et al. Organic & Biomolecular Chemistry,2016,14,5956.
66 Bai B, Ma J, Wei J, et al. Organic & Biomolecular Chemistry,2014,12,3478.
67 Bai B, Mao X, Wei J, et al. Sensors & Actuators B: Chemical,2015,211,268.
68 Gu X, Bai B, Wang H, et al. RSC Advances,2017,7,218.
69 Bai B, Zhang M, Wei J, et al. Tetrahedron,2016,72,5363.
70 Gu X, Bai B, Wei Z, et al. Journal of Molecular Liquids,2016,222,425.
71 Lee J, Kwon J E, You Y, et al. Langmuir,2014,30,2842.
72 Zang L, Shang H, Wei D, et al. Sensors & Actuators B: Chemical,2013,185,389.
73 Boiani M, Baschieri A, Cesari C, et al. New Journal of Chemistry,2012,36,1469.
74 Chen H, Feng Y, Deng G, et al. Chemistry—A European Journal,2015,21,11018.
75 Xing L, Yang B, Wang X, et al. Langmuir,2013,29,2843.
76 Li R, Wang S, Li Q, et al. Dyes and Pigments,2017,137,111.
[1] 许乃才, 洪天增, 刘忠, 张响飞, 董亚萍, 李武. 介孔氧化铝的可控制备及优异除氟性能[J]. 《材料导报》期刊社, 2017, 31(6): 45-49.
[2] 王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed