Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 45-49    https://doi.org/10.11896/j.issn.1005-023X.2017.06.010
  材料研究 |
介孔氧化铝的可控制备及优异除氟性能
许乃才1, 2, 3, 洪天增1, 3, 刘忠1, 张响飞1, 3, 董亚萍1, 李武1
1 中国科学院青海盐湖研究所, 西宁 810008;
2 青海师范大学化学系, 西宁 810008;
3 中国科学院大学, 北京 100049
Controllable Synthesis of Mesoporous Alumina with Excellent
Defluoridation Performance
XU Naicai1,2,3, HONG Tianzeng1,3, LIU Zhong1, ZHANG Xiangfei1,3, DONG Yaping1, LI Wu1
1 Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008;
2 Department of Chemistry,
Qinghai Normal University, Xining 810008;
3 University of Chinese Academy of Science, Beijing 100049
下载:  全 文 ( PDF ) ( 1609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以偏铝酸钠(NaAlO2)和氯化铝(AlCl3·6H2O)为铝源,葡萄糖(C6H12O6·H2O)为模板剂,采用水热及高温焙烧技术制备了不同晶型的氧化铝。用X射线衍射(XRD)、扫描电镜(SEM)、N2吸附脱附(BET)对制备产物的晶型、形貌及孔结构进行了表征。研究了不同晶型氧化铝对F-的吸附性能,结果表明550 ℃条件下的煅烧产物γ-Al2O3对F-的吸附效果最佳。吸附等温线结果表明介孔γ-Al2O3吸附F-为单层吸附,其Langmuir最大吸附容量为5.96 mg/g。吸附动力学试验表明,介孔γ-Al2O3在5 min内已吸附超过90%的F-,且吸附过程与准二级动力学模型相吻合。介孔γ-Al2O3吸附F-的机理涉及OH-与F-的离子交换。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许乃才
洪天增
刘忠
张响飞
董亚萍
李武
关键词:  γ-Al2O3  介孔  吸附  氟离子去除  吸附动力学    
Abstract: A series of mesoporous alumina with different crystalline types were successfully synthesized by using hydrothermal and high temperature roasting technologies, which employed sodium aluminate and aluminium chloride as the aluminum source, and glucose as the template agent. Structures, morphologies and textural properties of the products were characterized by XRD,SEM and BET, and defluoridation effects of the synthesized mesoporous alumina with different crystalline types were investigated by batch adsorption experiments. The experimental results showed that γ-Al2O3 prepared at 550 ℃ calcination temperature exhibited the excellent performance for fluoride removal. The adsorption isotherm was better described by the linear Langmuir model with a maximum adsorption capacity of 5.96 mg/g. The adsorption kinetics experiments indicated a high fluoride adsorption rate, as more than 90% fluoride ions were adsorbed within 5 minute. In addition, the adsorption kinetics was well fitted with linear pseudo-second-order mo-del, with a correlation coefficient value (R2) of 0.992 1. According to the results of the present study, the adsorption mechanism may involve ion exchange between F- and OH-.
Key words:  γ-Al2O3    mesopore    adsorption    fluoride removal    adsorption kinetics
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51302280;51574186)
通讯作者:  李武:男,1966年生,博士研究生导师,研究员,研究方向为晶须材料的制备及应用,E-mail:liwu2016@126.com   
作者简介:  许乃才:男,1984年生,博士研究生,讲师,研究方向为无机功能材料的制备及应用,E-mail:xunc@qhnu.edu.cn
引用本文:    
许乃才, 洪天增, 刘忠, 张响飞, 董亚萍, 李武. 介孔氧化铝的可控制备及优异除氟性能[J]. 《材料导报》期刊社, 2017, 31(6): 45-49.
XU Naicai, HONG Tianzeng, LIU Zhong, ZHANG Xiangfei, DONG Yaping, LI Wu. Controllable Synthesis of Mesoporous Alumina with Excellent
Defluoridation Performance. Materials Reports, 2017, 31(6): 45-49.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.010  或          http://www.mater-rep.com/CN/Y2017/V31/I6/45
1 Amini M, Mueller K, Abbaspour K C, et al. Statistical modeling of global geogenic fluoride contamination ingroundwaters[J].Environ Sci Technol,2008,42(10):3662.
2 Hu C Y, Lo S L, Kuan W H, et al. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation [J]. Water Res,2005,39:895.
3 Jin H Y, Ji Z J, Yuan J, et al. Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite [J]. J Alloys Compd,2015,620:361.
4 Meenakshi, Maheshwari R C. Fluoride in drinking water and its removal [J]. J Hazard Mater,2006,137:456.
5 Harrison P T C. Fluoride in water: A UK perspective [J]. J Fluorine Chem,2005,126:1448.
6 Huang K, Shao J G, Zhu H M, et al. Removal of fluoride from aqueoussolution onto Zr-loaded garlic peel (Zr-GP) particles [J]. J Cent South University,2011,18:1448.
7 Ji G J, Li M M, Li G H, et al. Hydrothermal synthesis of hierarchical micron flower-like γ-AlOOH and γ-Al2O3 superstructures from oil shale ash [J].Powder Technol,2012,215-216:54.
8 Peng C, Zhang J L, Xiong Z G,et al. Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation [J]. Micropor Mesopor Mater,2015,215:133.
9 Zhao G, Xia L, Zhong B, et al. Large-scale fast synthesis of single-crystalline alpha-alumina nanotubes [J]. Ceram Int,2015,41:2590.
10 Yang C, Gao L L, Wang Y X, et al. Fluoride removal by ordered and disordered mesoporous aluminas [J]. Microporous Mesoporous Mater,2014,197:156.
11 Wu Y C, Song Z Y, Yang Y, et al. Mechanism and control of α-phase transformation of alumina [J]. Chin J Rare Metals,2004,28(6):1043(in Chinese).
吴玉程, 宋振亚, 杨晔, 等. 氧化铝α相变及其相变控制的研究 [J]. 稀有金属,2004,28(6):1043.
12 Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chem Mater,2001,13(10):3169.
13 Huo Q S, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants: Supercage formation in a three-dimensional hexagonal array[J]. Science,1995,268(5215):1324.
14 Matos J R, Kruk M, Mercuri L P, et al. Ordered mesoporous silica with large cagelike pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time [J]. J Am Chem Soc,2003,125(3):821.
15 Wang S Y, Li X A, Wang S F, et al. Synthesis of γ-alumina via precipitation in ethanol [J]. Mater Lett,2008,62(20):3552.
16 Teng S X, Wang S G, Gong W X, et al. Removal of fluoride by hydrous manganese oxide-coated alumina: Performance and mechanism [J]. J Hazard Mater,2009,168:1004.
17 Tang D D, Zhang G K. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism [J]. Chem Eng J,2016,283:721.
18 Ma J Q, Shen Y, Shen C S, et al. Al-doping chitosan-Fe(Ⅲ) hydrogel for theremoval of fluoride from aqueous solutions [J].Chem Eng J,2014,248:98.
19 Chen N, Zhang Z Y, Feng C P, et al. Investigations on the batch and fixed-bedcolumn performance of fluoride adsorption by Kanuma mud [J].Desalination,2011,268:76.
20 Zhang G K, He Z L, Xu W. A low-cost and high efficientzirconium-modified-Na-attapulgite adsorbent for fluoride removal fromaqueous solutions [J].Chem Eng J,2012,183:315.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[4] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[5] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[6] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[10] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[11] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[12] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[13] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 王龙江, 李永国, 俞杰, 樊惠玲, 吴波, 韩丽红, 李彦樟, 乔太飞. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019, 33(4): 660-664.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed