Study on Corrosion Resistance of Micro-arc Oxidation Modified Magnesium Alloy in Three Kinds of Saturated Salt Solutions
AN Lingyun1, CHANG Chenggong2,3,*, KANG Disong1, WANG Zhao1, MENG Leichao1, PENG Jianhong1
1 Qinghai Provincial Key Laboratory of Nanomaterials and Technology, College of Physics and Electronic Information Engineering, Qinghai Minzu University, Xining 810007, China 2 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xining 810008, China 3 Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
Abstract: Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy in the silicate system. The thickness of the coatings was measured by the TT260 digital eddy current thickness gauge, and the microscopic morphology, element and phase compositions as well as elemental chemical bonding state of the coatings were measured by SEM, EDS, XRD and XPS. Cyclic voltammetry curve, potentiodynamic polarization curve and electrochemical impedance spectroscopy were applied to evaluate the corrosion resistance of the coatings in saturated sodium sulfate, sodium chloride and sodium bicarbonate corrosive media. The results shown that the corrosion resistance and corrosive behavior of the coatings are different in diverse saturated salt solutions. In sodium sulfate corrosive media, SO42- ions can not react with the coating, and its ability of penetrating coating is also weaker ascribed to its larger radius. Therefore, the ring area enclosed by the cyclic voltammetry curve is the smallest, which is 2 and 4 orders of magnitude smaller than those of sodium chloride and sodium bicarbonate, respectively. The corrosion current density of the coating is 41.6% of that of saturated sodium chloride, and is 4 orders of magnitude lower compared to that of sodium bicarbonate. Meantime, its impedance modulus is also higher. Thus it presents the best corrosion resistance. In sodium chloride media, the corrosion resis-tance of the coating is poorer due to the high activity, small radius and strong penetrating power of Cl- ions, and the coating exhibits the stronger pitting corrosion characteristics. In sodium bicarbonate solution, the coating possesses the worst corrosion resistance owing to the reaction of HCO3- with the coating and porous characteristics of the coating. With the immersion time prolonging, the corrosion resistance of the coating in saturated sodium sulfate and sodium chloride corrosive media increases first and then decreases, while in saturated sodium bicarbonate, the corrosion resistance first reduces and then fluctuates.
作者简介: 安凌云,2009年6月、2019年6月分别于兰州理工大学获得工学学士学位和博士学位。现为青海民族大学副教授。主要从事轻金属表面改性与防护工作。2020年入选为青海省“昆仑英才·高端创新创业人才”拔尖人才。在Journal of Magnesium and Alloys、Surface & Coatings Technology、Transactions of Nonferrous Metals Society of China以及《中国有色金属学报》等期刊发表论文10余篇。
引用本文:
安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
AN Lingyun, CHANG Chenggong, KANG Disong, WANG Zhao, MENG Leichao, PENG Jianhong. Study on Corrosion Resistance of Micro-arc Oxidation Modified Magnesium Alloy in Three Kinds of Saturated Salt Solutions. Materials Reports, 2023, 37(7): 21070250-10.
1 Mordike B L, Ebert T. Materials Science and Engineering:A, 2001, 302(1), 37. 2 Gray J E, Luan B. Journal of Alloys and Compounds, 2002, 336(1-2), 88. 3 Guo X W, Guo J C, Zhang Z C, et al. Surface Technology, 2017, 46(3), 53 (in Chinese). 郭兴伍, 郭嘉成, 章志铖, 等. 表面技术, 2017, 46(3), 53. 4 Yerokhin A L, Nie X, Leyland A, et al. Surface and Coatings Technology, 1999, 122(2-3), 73. 5 Dou J. Chen Y, Yu H, et al. Surface Engineering, 2017, 33(10), 731. 6 Chen Q Z, Tong Q, Huang D Y, et al. Materials Reports, 2018, 32(S1), 278 (in Chinese). 陈泉志, 童庆, 黄德宇, 等. 材料导报, 2018, 32(S1), 278. 7 Hussein R O, Zhang P, Nie X, et al. Surface and Coatings Technology, 2011, 206(7), 1990. 8 Simchen F, Sieber M, Lampke T. Surface & Coatings Technology, 2017, 315, 205. 9 Chen M, Ma Y Z, Hao Y. Frontiers of Mechanical Engineering in China, 2010, 5(1), 98. 10 Dong H R, Ma Y, Guo H X, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(3), 690 (in Chinese). 董海荣, 马颖, 郭惠霞, 等. 中国有色金属学报, 2015, 25(3), 690. 11 RakochA G, Monakhova E P, Khabibullina Z V, et al. Journal of Magnesium and Alloys, 2020, 8(3), 587. 12 Tu W, Cheng Y, Wang X, et al. Journal of Alloys and Compounds, 2017, 725, 199. 13 Chu C L, Han X, Xue F, et al. Applied Surface Science, 2013, 271, 271. 14 Malayoglu U, Tekin, K C, Shrestha, S. Surface and Coatings Technology, 2010, 205(6), 1793. 15 Cao Y X, Wang M J, Zhou F, et al. Surface Technology, 2021, 50(3), 348 (in Chinese). 曹雅心, 王梦杰, 周凡, 等. 表面技术, 2021, 50(3), 348. 16 Farhadi S S, Aliofkhazraei M, Darband G B, et al. Journal of Magnesium and Alloys, 2017, 5(2), 210. 17 Jin J, Li H, Li X. Rare Metal Materials and Engineering, 2017, 46(5), 1202. 18 Li Z, Kuang Q, Dong X, et al. Surface and Coatings Technology, 2019, 375, 600. 19 Yazici M, Gulec A E, Gurbuz M, et al. Thin Solid Films, 2017, 644, 92. 20 Luo H H, Cai Q Z. Rare Metal Materials & Engineering, 2011, 40(S2), 146 (in Chinese). 骆海贺, 蔡启舟. 稀有金属材料与工程, 2011, 40(S2), 146. 21 Gu Y H, Cai X J, Guo Y J, et al. Materials and Design, 2013, 43, 542. 22 Liang J, Srinivasan P B, Blawert C, et al. Corrosion Science, 2010, 52(2), 540. 23 Tan S Y, Zhang X B, Jiang X B, et al. Materials Reports B:Research Papers, 2016, 30(8), 5 (in Chinese). 谈淑咏, 章晓波, 江先彪, 等. 材料导报:研究篇, 2016, 30(8), 5. 24 Guo H X. The electrochemical corrosion behavior and mechanism of microarc oxidation coatings on magnesium alloys. Ph.D. Thesis, Lanzhou University of Technology, China, 2014 (in Chinese) 郭惠霞. 镁合金微弧氧化膜电化学腐蚀行为及机理研究. 博士学位论文, 兰州理工大学, 2014. 25 Li Y Y, Hu C R. Experiment design and data processing, Chemical Industry Press, China, 2020, pp.16 (in Chinese) 李云雁, 胡传荣. 实验设计与数据处理, 化学工业出版社, 2010, pp.16. 26 Fattah-Alhosseini A, Chaharmahali R, Babaei K. Journal of Magnesium and Alloys, 2020, 8(3), 799. 27 LouB S, Yen C A, Chen Y Y, et al. Journal of Materials Research and Technology, 2021, 10(3), 1355. 28 Chen Y, Yang Y, Zhang T, et al. Surface and Coatings Technology, 2016, 307, 825. 29 Wang Z Q. Studies on preparation and properties of micro-arc oxidation coating on biomedical AZ31B magnesium alloy. Master's Thesis, Liao-ning University, China, 2011 (in Chinese) 王泽庆. 生物医用AZ31B镁合金表面微弧氧化膜层的制备及性能研究. 硕士学位论文, 辽宁大学, 2011. 30 Li Z J, Yuan Y, Jing X Y, et al. Journal of Alloys and Compounds, 2017, 706, 419. 31 Li Z J, Jing X Y, Yuan Y, et al. Corrosion Science, 2012, 63, 358. 32 Wang L, Chen L, Yan Z C, et al. Journal of Alloys and Compounds, 2009, 480(2), 469. 33 Wang F P, Kang W L, Jing H M, et al. Principle, method and application of corrosion electrochemistry, Chemical Industry Press, China, 2008, pp.202 (in Chinese) 王凤平, 康万利, 敬和民, 等. 腐蚀电化学原理、方法及应用, 化学工业出版社, 2008, pp.202. 34 Liu C C, Liang J, Zhou J S, et al. Surface and Coatings Technology, 2016, 304, 179. 35 Guo H X, Ma Y, Zhang Y F, et al. Journal of the Chinese Ceramic Society, 2013, 41(3), 382 (in Chinese). 郭惠霞, 马颖, 张玉福, 等. 硅酸盐学报, 2013, 41(3), 382.