Research Progress of Effect of Auxiliary Treatment on Microstructure and Properties of Laser Cladding Layer
LIU Weidong1,2, MI Guofa1, LI Lei2,*, CHEN Xiaowen3, PAN Yujia3, ZHAI Fangyi1, MIAO Haowei1
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China 2 School of Materials, Shanghai Dianji University, Shanghai 201306, China 3 Shanghai Jinbo Laser Technology Co., Ltd., Shanghai 201306, China
Abstract: As a new surface processing technology, laser cladding offers incomparable advantages over other surface modification technologies. However, the performance of the heat-affected zone of the matrix deteriorates, leading to non-uniform microstructures and the generation of defects such as cracks and pores in the cladding layer. With the increasing demand for the enhanced surface performance of metal parts, it is important to improve the heat-affected zone in the matrix and the microstructure of the cladding layer. In this regard, this paper summarises the influence of heat treatment-assisted, electromagnetic-assisted, and ultrasonic-assisted methods on the microstructure and properties of laser cladding layers. Further, the influence of the various methods on the mechanism of microstructure transformation is summarised. The results provide suitable directions for the optimisation of and further improvement in the microstructure of laser cladding layers, and the paper concludes by noting the challenges and future perspectives in this regard.
刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
LIU Weidong, MI Guofa, LI Lei, CHEN Xiaowen, PAN Yujia, ZHAI Fangyi, MIAO Haowei. Research Progress of Effect of Auxiliary Treatment on Microstructure and Properties of Laser Cladding Layer. Materials Reports, 2023, 37(15): 21120139-7.
1 Bartkowski D, Mynarczak A, Piasecki A, et al. Optics & Laser Technology, 2015, 68, 198. 2 Chen J L, Li J, Song R, et al. Optics & Laser Technology, 2015, 72, 98. 3 Qin L Y, Bian H Y, Yang G, et al. Chinese Journal of Lasers, 2014, 41(3), 0802001-4. 4 Hu Y, Wang L, Li Y H, et al. Chinese Journal of Lasers, 2018, 45(8), 0303004-3. 5 Xie Q D, Zhao J F, Qi Y A, et al. Chinese Optics Letters, 2013, 11, 4. 6 Wang L, Hu Y, Song S Y, et al. Chinese Journal of Lasers, 2015, 42(11), 1103005-3. 7 Song S Y, Wang L, Yao Y, et al. Applied Surface Science, 2015, 351, 1. 8 Chen R, Wang C M, Jiang P, et al. Materials & Design, 2016, 109, 150. 9 Liu H X, Ji S W, Jiang Y H, et al. Chinese Journal of Lasers, 2012, 40(1), 0103007-5. 10 Qian M, Ramirez A, Das A. Journal of Crystal Growth, 2009, 311, 3710. 11 Jia L S, Cui W, Chen Y, et al. International Journal of Heat and Mass Transfer, 2018, 120, 910. 12 Suslick K S, Price G J. Annual Review of Materials Science, 1999, 29, 300 13 Aghayani M K, Niroumand B. Journal of Alloys and Compounds, 2011, 509(1), 116. 14 Suslick S, Kenneth S. Scientific American, 1989, 260(2), 82. 15 Huang Y, Zeng X, Hu Q, et al. Applied Surface Science, 2009, 255(7), 3943. 16 Zu F Q, Chen W L, Li M S. Fundamentals of materials forming processes, China Machine Press, China, 2016 (in Chinese). 祖方遒, 陈文琳, 李萌盛. 材料成形基本原理, 机械工业出版社, 2016. 17 Lewis S, Goodwin P, Fretwell-Smith S, et al. Wear, 2017, S376-377, 1934. 18 Meng L, Zhao W, Hou K, et al. MaterialsScience and Engineering: A, 2019, 748, 6. 19 Hao K, Gong M, Pi Y, et al. Journal of Materials Processing Technology, 2017, 251, 135. 20 Meng L, Zeng X, Hou K, et al. Surface and Coatings Technology, 2019, 374, 1046. 21 Meng L, Zhu B, Yan R, et al. Journal of Materials Research and Technology, 2021, 13, 1438. 22 Mortazavian E, Wang Z, Teng H. International Journal of Transportation Science and Technology, 2022, 11 (2), 412. 23 Aditya Y N, Dharish Srichandra T, Padmanabham G, et al. Materials Today: Proceedings, 2021, 41(5), 1150 24 Chen T, Li W, Liu D, et al. Ceramics International, 2021, 47(1), 762. 25 Gong F B, Shen J, Gao R H, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(8), 2121. 26 Kuang S H, Zhou F, Zheng S, et al. Intermetallics, 2021, 129, 3. 27 Li G J, Li J, Luo X. Materials Characterization, 2014, 98, 88. 28 Li G J, Li J, Luo X. Optics & Laser Technology, 2015, 65, 71. 29 Lu X L, Liu X B, Yu P C, et al. Applied Surface Science, 2015, 355, 353. 30 Sun G F, Wang K, Zhou R, et al. Optics & Laser Technology, 2015, 66, 100. 31 Peter R, Dylan C, Milan B, et al. Surface and Coatings Technology, 2020, 45, 5. 32 Hu Y, Wang L, Yao J, et al. Surface and Coatings Technology, 2019, 383, 4. 33 Zhai L L, Ban C Y, Zhang J W. Optics & Laser Technology, 2019, 114, 85. 34 Zhai L, Wang Q, Zhang J, et al. Ceramics International, 2019, 45(14), 16875. 35 Zhang Y, Xie D Q, Shen L D, et al. Hot Working Technology, 2015, 44(6), 4 (in Chinese). 张颖, 谢德巧, 沈理达, 等. 热加工工艺, 2015, 44(6), 4. 36 Xi Y C, Zhu J B, Liu S, et al. Laser & Optoelectronics Progress, 2018, 55(4), 6 (in Chinese). 西宇辰, 朱建波, 刘双, 等. 激光与光电子学进展, 2018, 55(4), 6. 37 Qi K, Yang Y, Sun R, et al. Optics & Laser Technology, 2021, 141, 4. 38 Fu Y M, Qi T, Zong L, et al. China Mechanical Engineering, 2017, 28(19), 5(in Chinese). 付宇明, 齐童, 宗磊, 等. 中国机械工程, 2017, 28(19), 5. 39 Yu B H, Hu X H, Wu Y E, et al. Chinese Joulnal of Lasers, 2010, 37(10), 6(in Chinese). 余本海, 胡雪惠, 吴玉娥, 等. 中国激光, 2010, 37(10), 6. 40 Cai C X, Liu H X, Jiang Y H, et al. Tribology, 2013, 33(3), 233(in Chinese). 蔡川雄, 刘洪喜, 蒋业华, 等. 摩擦学学报, 2013, 33(3), 233. 41 Zhai L L, Ban C Y, Zhang J W, et al. Materials Letters, 2019, 243, 197. 42 Zhang N, Liu W W, Deng D W, et al. Optics & Laser Technology, 2018, 108, 251. 43 Huo K, Zhou J Z, Dai F Z, et al. Applied Surface Science, 2021, 545, 3. 44 Wang L, Song S Y, Hu Y, et al. Chinese Joulnal of Lasers, 2015(9), 7(in Chinese). 王梁, 宋诗英, 胡勇, 等. 中国激光, 2015(9), 7. 45 Wen X, Cui X, Jin G, et al. Optics & Laser Technology, 2021, 142, 5. 46 Li M, Wang F, Ji G, et al. The Knee, 2020, 27(1), 15. 47 Wen X, Cui X, Jin G, et al. Journal of Alloys and Compounds, 2020, 835, 4. 48 Wang X H, Liu S S, Zhao G L, et al. Optics and Laser Technology, 2021, 136, 6. 49 Wu D J, Guo M H, Ma G Y, et al. Materials Letters, 2015, 141, 208. 50 Laborde J L, Hita A, Caltagirone J P, et al. Ultrasonics, 2000, 38(1-8), 299. 51 Liu F C, Lin X, Huang C P, et al. Journal of Alloys & Compounds, 2011, 509(13), 4508. 52 Zhu L D, Yang Z C, Xin B, et al. Surface and Coatings Technology, 2021, 410, 5. 53 Li M Y, Zhang Q, Han B, et al. Optics and Lasers in Engineering, 2020, 125, 10. 54 Han X, Li C, Yang Y P, et al. Surface and Coatings Technology, 2021, 406, 6. 55 Turski M, Clitheroe S, Evans A D, et al. Applied Physics A, 2010, 99(3), 554. 56 Vasylyev M A, Mordyuk B N, Sidorenko S I, et al. Surface and Coatings Technology, 2017, 33, 60. 57 Li M Y, Zhang Q, Han B, et al. Materials Chemistry and Physics, 2021, 258, 5. 58 Cui Z Q, Qin Z, Dong P, et al. Materials Letters, 2020, 259, 2. 59 Ye H, Zhu J S, Liu Y, et al. Surface & Coatings Technology, 2020, 393, 11. 60 Zhang C S, Shen X H, Wang J T, et al. Journal of Materials Research and Technology, 2021, 12, 111. 61 Vasylyev M A, Chenakin S P, Yatsenko L F. Acta Materialia, 2016, 103, 771. 62 Chenakin S P, Mordyuk B N, Khripta N I. Applied Surface Science, 2018, 470, 45. 63 Vasylyev M A, Chenakin S P, Yatsenko L F. Acta Materialia, 2012, 60(17), 6229. 64 Liu C, W J F, Tian L H, et al. Surface and Coatings Technology, 2021, 418, 11.