Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21120139-7    https://doi.org/10.11896/cldb.21120139
  金属与金属基复合材料 |
辅助处理对激光熔覆层组织和性能影响的研究进展
刘卫东1,2, 米国发1, 李雷2,*, 陈晓文3, 潘雨佳3, 翟芳艺1, 苗浩伟1
1 河南理工大学材料科学与工程学院,河南 焦作 454003
2 上海电机学院材料学院,上海 201306
3 上海仅博激光技术有限公司,上海 201306
Research Progress of Effect of Auxiliary Treatment on Microstructure and Properties of Laser Cladding Layer
LIU Weidong1,2, MI Guofa1, LI Lei2,*, CHEN Xiaowen3, PAN Yujia3, ZHAI Fangyi1, MIAO Haowei1
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
2 School of Materials, Shanghai Dianji University, Shanghai 201306, China
3 Shanghai Jinbo Laser Technology Co., Ltd., Shanghai 201306, China
下载:  全 文 ( PDF ) ( 15211KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光熔覆作为一种新兴的材料表面加工技术,相比于其他表面改性技术具有不可比拟的优势,但存在基体热影响区性能恶化,熔覆层组织分布不均匀,熔覆层存在裂纹、气孔等缺陷。随着金属零部件表面性能需求的日益提高,激光熔覆的基体热影响区和熔覆层组织和性能亟待进一步提升。基于此,本文概述了热处理辅助、电磁场辅助、超声辅助等方式对激光熔覆层组织和性能的影响,综述了各种辅助处理方式对组织和性能影响的机理与组织转变机制,为激光熔覆层组织和性能优化提供参考,并指出了激光熔覆层组织和性能优化面临的挑战和未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘卫东
米国发
李雷
陈晓文
潘雨佳
翟芳艺
苗浩伟
关键词:  激光熔覆  热处理辅助  电磁场辅助  超声辅助  组织和性能优化    
Abstract: As a new surface processing technology, laser cladding offers incomparable advantages over other surface modification technologies. However, the performance of the heat-affected zone of the matrix deteriorates, leading to non-uniform microstructures and the generation of defects such as cracks and pores in the cladding layer. With the increasing demand for the enhanced surface performance of metal parts, it is important to improve the heat-affected zone in the matrix and the microstructure of the cladding layer. In this regard, this paper summarises the influence of heat treatment-assisted, electromagnetic-assisted, and ultrasonic-assisted methods on the microstructure and properties of laser cladding layers. Further, the influence of the various methods on the mechanism of microstructure transformation is summarised. The results provide suitable directions for the optimisation of and further improvement in the microstructure of laser cladding layers, and the paper concludes by noting the challenges and future perspectives in this regard.
Key words:  laser cladding    heat treatment aid    electromagnetic field assist    ultrasonic assisted    organizational performance optimization
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TG139  
基金资助: 上海市科委“科技创新行动计划”重大专项(19511105402)
通讯作者:  * 李雷,上海电机学院材料学院教授。1997年7月、2000年7月于河南理工大学分别获工学学士学位、工学硕士学位,2003年10月于中国科学技术大学获工学博士学位。2003年10月至2005年10月于北京有色金属研究总院材料科学与工程从事博士后研究工作。现任中国机械工程学会塑性工程分会大锻件技术专业委员会委员、中国有色金属学会合金加工委员会委员、全国激光修复技术标准化技术委员会委员。目前主要研究方向为激光焊接、金属材料表面的激光处理、激光熔覆增材再制造等。lilei1975@163.com   
作者简介:  刘卫东,于2016年6月材料成型及控制工程专业毕业,获工学学士学位。现为河南理工大学材料科学与工程学院材料科学与工程专业,材料加工系硕士研究生,在米国发教授和李雷教授的指导下进行研究。主要研究方向为超高速激光熔覆高熵合金、激光表面处理对材料表面的改性,激光焊接。
引用本文:    
刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
LIU Weidong, MI Guofa, LI Lei, CHEN Xiaowen, PAN Yujia, ZHAI Fangyi, MIAO Haowei. Research Progress of Effect of Auxiliary Treatment on Microstructure and Properties of Laser Cladding Layer. Materials Reports, 2023, 37(15): 21120139-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120139  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21120139
1 Bartkowski D, Mynarczak A, Piasecki A, et al. Optics & Laser Technology, 2015, 68, 198.
2 Chen J L, Li J, Song R, et al. Optics & Laser Technology, 2015, 72, 98.
3 Qin L Y, Bian H Y, Yang G, et al. Chinese Journal of Lasers, 2014, 41(3), 0802001-4.
4 Hu Y, Wang L, Li Y H, et al. Chinese Journal of Lasers, 2018, 45(8), 0303004-3.
5 Xie Q D, Zhao J F, Qi Y A, et al. Chinese Optics Letters, 2013, 11, 4.
6 Wang L, Hu Y, Song S Y, et al. Chinese Journal of Lasers, 2015, 42(11), 1103005-3.
7 Song S Y, Wang L, Yao Y, et al. Applied Surface Science, 2015, 351, 1.
8 Chen R, Wang C M, Jiang P, et al. Materials & Design, 2016, 109, 150.
9 Liu H X, Ji S W, Jiang Y H, et al. Chinese Journal of Lasers, 2012, 40(1), 0103007-5.
10 Qian M, Ramirez A, Das A. Journal of Crystal Growth, 2009, 311, 3710.
11 Jia L S, Cui W, Chen Y, et al. International Journal of Heat and Mass Transfer, 2018, 120, 910.
12 Suslick K S, Price G J. Annual Review of Materials Science, 1999, 29, 300
13 Aghayani M K, Niroumand B. Journal of Alloys and Compounds, 2011, 509(1), 116.
14 Suslick S, Kenneth S. Scientific American, 1989, 260(2), 82.
15 Huang Y, Zeng X, Hu Q, et al. Applied Surface Science, 2009, 255(7), 3943.
16 Zu F Q, Chen W L, Li M S. Fundamentals of materials forming processes, China Machine Press, China, 2016 (in Chinese).
祖方遒, 陈文琳, 李萌盛. 材料成形基本原理, 机械工业出版社, 2016.
17 Lewis S, Goodwin P, Fretwell-Smith S, et al. Wear, 2017, S376-377, 1934.
18 Meng L, Zhao W, Hou K, et al. Materials Science and Engineering: A, 2019, 748, 6.
19 Hao K, Gong M, Pi Y, et al. Journal of Materials Processing Technology, 2017, 251, 135.
20 Meng L, Zeng X, Hou K, et al. Surface and Coatings Technology, 2019, 374, 1046.
21 Meng L, Zhu B, Yan R, et al. Journal of Materials Research and Technology, 2021, 13, 1438.
22 Mortazavian E, Wang Z, Teng H. International Journal of Transportation Science and Technology, 2022, 11 (2), 412.
23 Aditya Y N, Dharish Srichandra T, Padmanabham G, et al. Materials Today: Proceedings, 2021, 41(5), 1150
24 Chen T, Li W, Liu D, et al. Ceramics International, 2021, 47(1), 762.
25 Gong F B, Shen J, Gao R H, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(8), 2121.
26 Kuang S H, Zhou F, Zheng S, et al. Intermetallics, 2021, 129, 3.
27 Li G J, Li J, Luo X. Materials Characterization, 2014, 98, 88.
28 Li G J, Li J, Luo X. Optics & Laser Technology, 2015, 65, 71.
29 Lu X L, Liu X B, Yu P C, et al. Applied Surface Science, 2015, 355, 353.
30 Sun G F, Wang K, Zhou R, et al. Optics & Laser Technology, 2015, 66, 100.
31 Peter R, Dylan C, Milan B, et al. Surface and Coatings Technology, 2020, 45, 5.
32 Hu Y, Wang L, Yao J, et al. Surface and Coatings Technology, 2019, 383, 4.
33 Zhai L L, Ban C Y, Zhang J W. Optics & Laser Technology, 2019, 114, 85.
34 Zhai L, Wang Q, Zhang J, et al. Ceramics International, 2019, 45(14), 16875.
35 Zhang Y, Xie D Q, Shen L D, et al. Hot Working Technology, 2015, 44(6), 4 (in Chinese).
张颖, 谢德巧, 沈理达, 等. 热加工工艺, 2015, 44(6), 4.
36 Xi Y C, Zhu J B, Liu S, et al. Laser & Optoelectronics Progress, 2018, 55(4), 6 (in Chinese).
西宇辰, 朱建波, 刘双, 等. 激光与光电子学进展, 2018, 55(4), 6.
37 Qi K, Yang Y, Sun R, et al. Optics & Laser Technology, 2021, 141, 4.
38 Fu Y M, Qi T, Zong L, et al. China Mechanical Engineering, 2017, 28(19), 5(in Chinese).
付宇明, 齐童, 宗磊, 等. 中国机械工程, 2017, 28(19), 5.
39 Yu B H, Hu X H, Wu Y E, et al. Chinese Joulnal of Lasers, 2010, 37(10), 6(in Chinese).
余本海, 胡雪惠, 吴玉娥, 等. 中国激光, 2010, 37(10), 6.
40 Cai C X, Liu H X, Jiang Y H, et al. Tribology, 2013, 33(3), 233(in Chinese).
蔡川雄, 刘洪喜, 蒋业华, 等. 摩擦学学报, 2013, 33(3), 233.
41 Zhai L L, Ban C Y, Zhang J W, et al. Materials Letters, 2019, 243, 197.
42 Zhang N, Liu W W, Deng D W, et al. Optics & Laser Technology, 2018, 108, 251.
43 Huo K, Zhou J Z, Dai F Z, et al. Applied Surface Science, 2021, 545, 3.
44 Wang L, Song S Y, Hu Y, et al. Chinese Joulnal of Lasers, 2015(9), 7(in Chinese).
王梁, 宋诗英, 胡勇, 等. 中国激光, 2015(9), 7.
45 Wen X, Cui X, Jin G, et al. Optics & Laser Technology, 2021, 142, 5.
46 Li M, Wang F, Ji G, et al. The Knee, 2020, 27(1), 15.
47 Wen X, Cui X, Jin G, et al. Journal of Alloys and Compounds, 2020, 835, 4.
48 Wang X H, Liu S S, Zhao G L, et al. Optics and Laser Technology, 2021, 136, 6.
49 Wu D J, Guo M H, Ma G Y, et al. Materials Letters, 2015, 141, 208.
50 Laborde J L, Hita A, Caltagirone J P, et al. Ultrasonics, 2000, 38(1-8), 299.
51 Liu F C, Lin X, Huang C P, et al. Journal of Alloys & Compounds, 2011, 509(13), 4508.
52 Zhu L D, Yang Z C, Xin B, et al. Surface and Coatings Technology, 2021, 410, 5.
53 Li M Y, Zhang Q, Han B, et al. Optics and Lasers in Engineering, 2020, 125, 10.
54 Han X, Li C, Yang Y P, et al. Surface and Coatings Technology, 2021, 406, 6.
55 Turski M, Clitheroe S, Evans A D, et al. Applied Physics A, 2010, 99(3), 554.
56 Vasylyev M A, Mordyuk B N, Sidorenko S I, et al. Surface and Coatings Technology, 2017, 33, 60.
57 Li M Y, Zhang Q, Han B, et al. Materials Chemistry and Physics, 2021, 258, 5.
58 Cui Z Q, Qin Z, Dong P, et al. Materials Letters, 2020, 259, 2.
59 Ye H, Zhu J S, Liu Y, et al. Surface & Coatings Technology, 2020, 393, 11.
60 Zhang C S, Shen X H, Wang J T, et al. Journal of Materials Research and Technology, 2021, 12, 111.
61 Vasylyev M A, Chenakin S P, Yatsenko L F. Acta Materialia, 2016, 103, 771.
62 Chenakin S P, Mordyuk B N, Khripta N I. Applied Surface Science, 2018, 470, 45.
63 Vasylyev M A, Chenakin S P, Yatsenko L F. Acta Materialia, 2012, 60(17), 6229.
64 Liu C, W J F, Tian L H, et al. Surface and Coatings Technology, 2021, 418, 11.
[1] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[2] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[3] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[4] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[5] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[6] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[7] 张春芝, 尚希昌, 孙晟瑄, 单美琳, 王灿明, 崔洪芝. 激光熔覆高性能Fe基非晶涂层的研究进展[J]. 材料导报, 2022, 36(15): 21020101-8.
[8] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[9] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[10] 侯锁霞, 任呈祥, 吴超, 赵江昆, 张舵, 张好强. 激光熔覆层裂纹的产生和抑制方法[J]. 材料导报, 2021, 35(Z1): 352-356.
[11] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[12] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[13] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[14] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[15] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed