Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21100209-10    https://doi.org/10.11896/cldb.21100209
  无机非金属及其复合材料 |
高性能新型Mg3(Sb,Bi)2基热电材料的发展现状
徐晨辉1,2, 孔栋1,2, 况志祥1,2, 陈卓1,2, 马燕1,2, 邹富祥1,2, 陈昕1,2, 胡晓明1,2, 冯波1,2, 樊希安1,2,*
1 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,武汉 430081
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Development of High Performance Mg3(Sb, Bi)2-based Thermoelectric Materials
XU Chenhui1,2, KONG Dong1,2, KUANG Zhixiang1,2, CHEN Zhuo1,2, MA Yan1,2, ZOU Fuxiang1,2, CHEN Xin1,2, HU Xiaoming1,2, FENG Bo1,2, FAN Xi'an1,2,*
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 5444KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电材料能够实现热能与电能的相互转换,是一种可以应用于余热回收及半导体制冷等相关领域的功能性材料。传统热电材料的发展目前已趋于成熟,但仍然面临着高昂的原料成本及较低的热电转换效率等问题。Mg3(Sb,Bi)2基热电材料自被发现以来就以其低成本的元素组成和作为Zintl相具备的本征低热导率受到广泛关注。其中n型传导样品由于高能带简并度的优势更是有着较高的塞贝克系数,相较于传统中低温热电材料具备更大的发展潜力。然而,较大的带隙使得Mg3(Sb,Bi)2基热电材料载流子浓度整体偏低,同时还存在着由Mg空位引起的热稳定性较差的问题。为此,在保证该材料低热导率的同时,研究者们尝试了不同的制备工艺,并通过组分优化和结构优化来不断改善其电输运性能及热稳定性。目前Mg3(Sb,Bi)2基热电材料的最大ZT值已经达到1.8以上,同时其器件化后的热电转换效率也可媲美于传统Bi2Te3基热电器件。本文总结了Mg3(Sb,Bi)2基热电材料的基础物理性能与制备方法,从不同的优化手段出发依次介绍了现阶段该材料的研究成果,并展望了其在未来可行的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐晨辉
孔栋
况志祥
陈卓
马燕
邹富祥
陈昕
胡晓明
冯波
樊希安
关键词:  热电材料  镁合金  Mg3(Sb,Bi)2  热电性能优化    
Abstract: Thermoelectric materials that convert electric energy and thermal energy are applied as functional materials in waste heat recovery and semiconductor refrigeration. Research on conventional thermoelectric materials has reached maturity; further development of such materials is hampered by the high cost of raw materials and low thermoelectric conversion efficiency. To overcome these limitations, Mg3(Sb, Bi)2Zintl phases have attracted extensive attention since their discovery and have been widely applied as thermoelectric materials because of their low cost and intrinsic low thermal conductivity. In addition, N-type Mg3(Sb, Bi)2-based conduction materials, having a high Seebeck coefficient owing to high energy band degeneracy, are hypothesized to be more effective than conventional medium- and low-temperature thermoelectric materials. However, the application of Mg3(Sb, Bi)2-based thermoelectric materials is limited because of the low carrier concentration caused by the large bandgap and the low thermal stability due to Mg vacancies. In addition to the maintenance of initial low thermal conductivity of such materials, researchers have continually tried to improve the electrical transport performance and thermal stability by employing different preparation processes and by conducting component and structure optimization. At present, the maximum ZT value of Mg3(Sb, Bi)2-based thermoelectric materials is above 1.8, and the conversion efficiency of the Mg3(Sb, Bi)2-based thermoelectric devices has been comparable to that of conventional low-temperature thermoelectric materials. This paper summarizes the physical properties and preparation methods of Mg3(Sb, Bi)2-based thermoelectric materials. The research progress on different optimization methods to prepare Mg3(Sb, Bi)2-based thermoelectric materials is discussed in detail, and possible future developments of the materials are presented.
Key words:  thermoelectric material    magnesium alloy    Mg3(Sb    Bi)2    optimization of thermoelectric performance
发布日期:  2023-07-10
ZTFLH:  TB34  
基金资助: 湖北省支持企业技术创新发展项目(QYJSCX2021000321);国家重点研发计划(SQ2020YFF0404755);湖北省“双创战略团队”项目(CYTDC2018000094);鄂州市科技计划项目(EZ01-001-20190001);湖北省自然科学基金青年项目(2021CFB009)
通讯作者:  *樊希安,武汉科技大学材料与冶金学院教授、博士研究生导师。1999年安徽工业大学钢铁冶金专业本科毕业,2004年昆明理工大学冶金物理化学专业硕士毕业,2007年华中科技大学材料学专业博士毕业,2009年从武汉理工大学材料复合新技术国家重点实验室博士后出站。目前主要从事热-电转换温差发电技术、磁-电能量转换技术、辐射换热技术及其关键新材料等方面的研究工作。发表论文100余篇,包括Journal of Materials Chemistry、Materials & Design、Journal of Physics D:Applied Physics、Journal of Alloys and Compounds、Ceramics International、Journal of Magnetism and Magnetic Materials等。groupfxa@163.com   
作者简介:  徐晨辉,2019年6月毕业于武汉科技大学,获得工学学士学位。现为武汉科技大学材料与冶金学院硕士研究生,在樊希安教授的指导下进行研究。目前主要研究领域为热电材料。
引用本文:    
徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
XU Chenhui, KONG Dong, KUANG Zhixiang, CHEN Zhuo, MA Yan, ZOU Fuxiang, CHEN Xin, HU Xiaoming, FENG Bo, FAN Xi'an. Development of High Performance Mg3(Sb, Bi)2-based Thermoelectric Materials. Materials Reports, 2023, 37(13): 21100209-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100209  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21100209
1 Jiang J, Chen L D, Bai S Q, et al. Journal of Alloys & Compounds, 2005, 390(1-2), 208.
2 Basu R, Bhattacharya S, Bhatt R, et al. Journal of Materials Chemistry A, 2014, 2(19), 6922.
3 Ben-Ayoun D, Sadia Y, Gelbstein Y. Journal of Alloys & Compounds, 2017, 722, 33.
4 Zhu B, Liu X X, Wang Q, et al. Energy & Environmental Science, 2020, 13(7), 2106.
5 Schäfer H, Eisenmann B, Edition W. Angewandte Chemie International Edition, 2010, 12(9), 694.
6 Liu Q, Liu K F, Wang Q Q, et al. Acta Materialia, 2022, 230, 117853.
7 Tamaki H, Sato H K, Kanno T. Advanced Materials, 2016, 28(46), 10182.
8 Ponnambalam V, Morelli D T. Journal of Electronic Materials, 2013, 42(7), 1307.
9 Zhou D W, Liu J S, Xu S H, et al. Physica B Condensed Matter, 2010, 405(13), 2863.
10 Jorgensen L R, Zhang J W, Zeuthen C B, et al. Journal of Materials Chemistry A, 2018, 6(35), 17171.
11 Song L R, Zhang J W, Iversen B B, et al. Physical Chemistry Chemical Physics, 2019, 21(8), 4295.
12 Calderón-Cueva M, Peng W Y, Clarke S M, et al. Chemistry of Materials, 2021, 33(2), 567.
13 Mao J, Shuai J, Song S W, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40), 10548.
14 Shuai J, Ge B, Mao J, et al. Journal of the American Chemical Society, 2018, 140(5), 1910.
15 Wood M, Kuo J, Imasato K, et al. Advanced Materials, 2019, 31(35), 1902337.
16 Zhang J W, Iversen B B. Journal of Applied Physics, 2019, 126(8), 085014.
17 Chen Y Q, Wang C, Ma Z, et al. Current Applied Physics, 2021, 21, 25.
18 Chen X X, Wu H J, Cui J, et al. Nano Energy, 2018, 52, 246.
19 Mao J, Zhu H T, Ding Z W, et al. Science, 2019, 365(6452), 495.
20 Li J, Zhang S, Jia F, et al. Materials Today Physics, 2020, 15, 100269.
21 Liang Z X, Xu C C, Shang H J, et al. Materials Today Physics, 2021, 19, 100413.
22 Zintl E, Husemann E. Zeitschrift Für Physikalische Chemie, 1933, 21B(1), 138.
23 Ferrier R P, Herrell D J. Journal of Non-Crystalline Solids, 1970, 2, 278.
24 Sutton C M. Solid State Communications, 1975, 16(3), 327.
25 Bringans R D, Sutton C M. Solid State Communications, 1976, 19(3), 277.
26 Kajikawa T, Kimura N, Yokoyama T. In:Proceedings ICT'03. 22nd International Conference on Thermoelectrics. France, 2003, pp. 305.
27 Xin H X, Qin X Y. Journal of Physics D:Applied Physics, 2006, 39(24), 5331.
28 Imai Y, Watanabe A. Journal of Materials Science, 2006, 41(8), 2435.
29 Wang L. Journal of Rare Earths, 2006, 24(1), 376.
30 Yang M B, Pan F S, Shen J, et al. Transactions of Nonferrous Metals Society of China, 2009, 19(2), 287.
31 Tani J I, Takahashi M, Kido H, et al. Physica B Condensed Matter, 2010, 405(19), 4219.
32 Zou C M, Zhang Y M, Wang W, et al. Transactions of Nonferrous Metals Society of China, 2011, 21, s222.
33 Condron C L, Kauzlarich S M, Gascoin F, et al. Journal of Solid State Chemistry, 2016, 179(8), 2252.
34 Zhang J W, Song L R, Pedersen S H, et al. Nature Communications, 2017, 8, 13901.
35 Zhang J W, Song L R, Borup K A, et al. Advanced Energy Materials, 2018, 8(16), 1702776.
36 Li J, Zhang S, Zheng S Q, et al. The Journal of Physical Chemistry C, 2019, 123(34), 20781.
37 Zhu Q, Song S W, Zhu H T, et al. Journal of Power Sources, 2019, 414, 393.
38 Imasato K, Wood M, Kuo J J, et al. Journal of Materials Chemistry A, 2018, 6(41), 19941.
39 Giuseppetti G, Mazzi F, Tadini C. Tschermaks Mineralogische Und Petrographische Mitteilungen, 1977, 24(1), 1.
40 Sevast'Yanova L G, Kravchenko O V, Gulish O K, et al. Inorganic Materials, 2006, 42(8), 863.
41 Li A R, Fu C G, Zhao X B, et al. Research, 2020, 2020(1), 1.
42 Peng W Y, Petretto G, Rignanese G M, et al. Joule, 2018, 2(19), 1879.
43 Sedighi M, Nia B A, Zarringhalam H, et al. European Physical Journal Applied Physics, 2013, 61(1), 10103.
44 Ullah M, Murtaza G, Ramay S M, et al. Materials Research Bulletin, 2017, 91, 22.
45 Zhang J W, Song L R, Iversen B B. NPJ Computational Materials, 2019, 5, 76.
46 Imasato K, Kang S D, Ohno S. Materials Horizons, 2018, 5(1), 59.
47 Sun X, Li X, Yang J O. Journal of Computational Chemistry, 2019, 40(18), 1693.
48 Huang S, Wang Z Y, Xiong R, et al. Nano Energy, 2019, 62, 212.
49 Verbrugge D M, Zytveld J B V. Journal of Non-Crystalline Solids, 1993, 156, 736.
50 Zhan X M, Jin L, Dai X F, et al. The Journal of Physical Chemistry Letters, 2017, 8(19), 4814.
51 Lee J, Monserrat B, Seymour I D, et al. Journal of Materials Chemistry A, 2018, 6(35), 16983.
52 Tan X J, Liu G Q, Hu H Y, et al. Journal of Materials Chemistry A, 2019, 7(15), 8922.
53 Pei Y Z, Shi X Y, Lalonde A, et al. Nature, 2018, 473(7345), 66.
54 Zhao L D, Zhang B P, Li J F, et al. Solid State Sciences, 2008, 10(5), 651.
55 Go J B, Lee H J, Yu H, et al. Journal of Alloys and Compounds, 2019, 821, 153442.
56 Zhu Y K, Wu P, Guo J, et al. Ceramics International, 2020, 46(10), 14994.
57 Kanno T, Tamaki H, Sato H K, et al. Applied Physics Letters, 2018, 112(3), 033903.
58 Shuai J, Wang Y M, Kim H S, et al. Acta Materialia, 2015, 93, 187.
59 Song S W, Mao J, Shuai J, et al. Applied Physics Letters, 2018, 112(9), 092103.
60 Song S W, Mao J, Bordelon M, et al. Materials Today Physics, 2019, 8, 25.
61 Li J F, Pan Y, Wu C F, et al. Science China Technological Sciences, 2017, 60(9), 1347.
62 Fang D, Sun Z, Li Y Y, et al. Applied Thermal Engineering, 2016, 92, 187.
63 Shi X M, Zhao T T, Zhang X Y. Advanced Materials, 2019, 31(36), 1903387.
64 Kihou K, Kunioka H, Nishiate H, et al. Journal of Materials Research and Technology, 2020, 10, 438.
65 Lyu F, Zhang Q, Fan W H, et al. Journal of Materials Science, 2018, 53, 8039.
66 Shuai J, Mao J, Song S W, et al. Energy & Environmental Science, 2017, 10(3), 799.
67 Wood M, Imasato K, Anand S, et al. Journal of Materials Chemistry A, 2020, 8(4), 2033.
68 Wang Y, Zhang X, Liu Y Q, et al. Vacuum, 2020, 177, 109388.
69 Zhang Q, Hou J C, Fan J F, et al. Physical Chemistry Chemical Physics, 2020, 22(13), 7012.
70 Hu J S, Guo F K, Guo M C, et al. Journal of Materiomics, 2020, 6(14), 729.
71 Zhang J W, Song L R, Mamakhel A, et al. Chemistry of Materials, 2017, 29(12), 5371.
72 Shi X M, Sun C, Zhang X Y, et al. Chemistry of Materials, 2019, 31(21), 8987.
73 Li J, Jia F, Zhang S, et al. Journal of Materials Chemistry A, 2019, 7(33), 19316.
74 Zhang F, Chen C, Yao H H, et al. Advanced Functional Materials, 2020, 30(5), 1906143.
75 Han Z J, Gui Z G, Zhu Y B, et al. Research, 2020, 2020, 1672051.
76 Goldsmid H J. Journal of Applied Physics, 1961, 32(10), 2198.
77 Madar N, Givon T, Mogilyansky D, et al. Journal of Applied Physics, 2016, 120(3), 71.
78 Imasato K, Kang S D, Snyder G J. Energy & Environmental Science, 2019, 12(3), 965.
79 Koumoto K, Mori T. Thermoelectric Nanomaterials, Springer, Berlin, 2013, pp. 3.
80 Zevalkink A, Smiadak D M, Blackburn J L, et al. Applied Physics Reviews, 2018, 5(2), 021303.
81 Pan Y, Yao M Y, Hong X C, et al. Energy & Environmental Science, 2020, 13(6), 1717.
82 Pomrehn G S, Zevalkink A, Zeier W G, et al. Angewandte Chemie International Edition, 2014, 126(13), 3490.
83 Du Z L, Zhu T J, Chen Y, et al. Journal of Materials Chemistry, 2012, 22(14), 6838.
84 Ohno S, Imasato K, Anand S, et al. Joule, 2018, 2(1), 141.
85 Imasato K, Ohno S, Kang S D, et al. APL Materials, 2018, 6(1), 016106.
86 May A F, Mcguire M A, Ma J, et al. Physical Review, 2012, 85(3), 035202.
87 Zhang J W, Song L R, Iversen B B. ACS Applied Materials & Interfaces, 2021, 13(9), 10964.
88 Liang J S, Yang H Q, Liu C Y, et al. ACS Applied Materials & Interfaces, 2020, 12(19), 21799.
89 Kuo J J, Yu Y, Kang S D, et al. Advanced Materials Interfaces, 2019, 6(13), 1900429.
90 Sui J H, Li J, He J Q, et al. Energy & Environmental Science, 2013, 6(10), 2916.
91 Feng D, Ge Z H, Wu D, et al. Physical Chemistry Chemical Physics, 2016, 18(46), 31821.
92 Li G D, Aydemir U, Wood M, et al. Journal of Materials Chemistry A, 2017, 5(19), 9050.
93 Shi X M, Sun C, Bu Z L, et al. Advanced Science, 2019, 6(16), 1802286.
94 Shang H J, Liang Z X, Xu C C, et al. Acta Materialia, 2020, 201, 572.
95 Liu Z H, Sato N, Gao W H, et al. Joule, 2021, 5(5), 1196.
96 Bu Z L, Zhang X Y, Hu Y X, et al. Energy & Environmental Science, 2021, 14(12), 6506.
97 Zhang J W, Song L R, Iversen B B. Angewandte Chemie International Edition, 2019, 59(11), 4278.
98 Zhang Q, Su X L, Yan Y G, et al. ACS Applied Materials & Interfaces, 2016, 8(5), 3268.
99 Yang D W, Su X L, Yan Y G, et al. Chemistry of Materials, 2016, 28(13), 4628.
[1] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[2] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[3] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[4] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[5] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[6] 史燃, 张翔宇, 南波航, 徐桂英. Cu2Se热电忆阻器模拟计算与性能表征[J]. 材料导报, 2023, 37(13): 22010058-7.
[7] 侯继禹, 王保杰, 许凯, 许道奎, 孙杰. 镁合金负差数效应的研究进展[J]. 材料导报, 2023, 37(12): 21070256-7.
[8] 刘灵, 杨伟, 吴宗锴, 徐勇, 余欢. 深冷处理对快冷Mg-6Al-1Y合金等温时效析出的影响[J]. 材料导报, 2023, 37(12): 21070188-5.
[9] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[10] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[11] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[12] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[13] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[14] 董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
[15] 徐志超, 吴涛, 郭学锋, 杨文朋, 樊建峰, 肖思宇. 脉冲电流在镁合金加工中的应用进展[J]. 材料导报, 2022, 36(21): 20100018-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed