Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21100218-8    https://doi.org/10.11896/cldb.21100218
  金属与金属基复合材料 |
电接触领域导电润滑添加剂及其摩擦学行为的研究现状
李红1, 陈梓嵩1, 栗卓新1,*, 祝静1, Erika Hodúlová2
1 北京工业大学材料与制造学部,北京 100124
2 斯洛伐克科学院材料与机械研究所,布拉迪斯拉发 84513
Research Status of Conductive Lubricated Additives for Applications in Electrical Contact and Tribology Behavior
LI Hong1, CHEN Zisong1, LI Zhuoxin1,*, ZHU Jing1, Erika Hodúlová2
1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 Slovak Academy of Sciences, Institute of Materials and Machine Mechanics, Bratislava 84513, Slovak Republic
下载:  全 文 ( PDF ) ( 5764KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 导电润滑剂对减少电接触过程的摩擦磨损,提高效率,延长服役寿命,促进电力电子、航空航天、轨道交通领域的绿色化、智能化和高效化发展具有重要作用。但现阶段导电润滑剂存在耐热性、分散稳定性、抗氧化性和抗腐蚀性能不足等问题,难以满足电磁场、温度场、摩擦热应力场及多场耦合复杂工况的苛刻要求。
国内外学者对各种新型导电润滑添加剂进行了研究,包括石墨烯、碳纳米管、导电聚合物以及离子液体等,发现上述材料作为油基添加剂可在电接触副界面发生摩擦物理吸附和化学反应,形成摩擦反应膜,起到减小接触电阻、提高界面载流效率、减少接触副磨损、提高表面抗腐蚀性等作用。
本文通过综述金属基、碳基、离子液体基以及复合型导电润滑添加剂的摩擦学行为的研究现状,分析电接触副间接触摩擦反应膜的尺寸、形态、分布以及力学性能对配副摩擦学行为的影响,总结了添加剂尺寸、成分、浓度、分散性对导电润滑剂减摩抗磨性能的影响规律,归纳了添加剂的润滑机理,并展望了导电润滑添加剂在电接触领域的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红
陈梓嵩
栗卓新
祝静
Erika Hodúlová
关键词:  电接触  润滑  摩擦学  导电润滑添加剂  反应润滑膜    
Abstract: Conductive lubricants play an important role in reducing friction and wear during electrical contact, improving efficiency, prolonging service life, and promoting green, intelligent and efficient development in power electronics, the aerospace industry and rail transit. However, at this stage, conductive lubricants demonstrate problems such as insufficient heat resistance, dispersion stability, oxidation resistance and corrosion resistance, and it is difficult to meet the harsh requirements of complex working conditions in electromagnetic, temperature, frictional thermal stress and multi-coupled fields.
Numerous scholars have studied various new conductive lubricated additives, including graphene, carbon nanotubes, conductive polymers, and ionic liquids. It has been found that the aforementioned materials added to conductive lubricants as oil-based additives can produce frictional physical adsorption and a chemical reaction at the electrical contact sub-interface, forming a friction reaction film that plays a role in reducing contact resistance, improving interfacial current-carrying efficiency, reducing contact pair wear, and improving surface corrosion resistance.
In this paper, by reviewing the research status of tribological behavior in metal-based, carbon-based, ionic-liquid-based, and composite conductive lubricant additives, the influence of size, shape, distribution and mechanical properties of lubricant film on the tribological behavior of the pair is analyzed. The influence of size, composition, concentration, and dispersity of conductive lubricant additives on the anti-friction and anti-wear performance of lubricants is summarized, as is the lubrication mechanism. Finally, we look ahead to the development trends of conductive additives in the electrical contact field.
Key words:  electrical contact    lubrication    tribology    conductive lubricated additive    reaction lubricating film
发布日期:  2023-07-10
ZTFLH:  TH117  
基金资助: 国家自然科学基金(52074017);北京市自然科学基金(3202002);2021年度北京工业大学国际科研合作种子基金项目(2021A14);2021年度中国-中东欧国家高校联合教育项目(2021113)
通讯作者:  *栗卓新,北京工业大学材料与制造学部教授、博士研究生导师。1984年于天津大学获工学学士学位,1988年于太原工业大学获工学硕士学位,1994年于天津大学获工学博士学位,1994—1996年在天津大学国家燃烧学重点实验室博士后流动站从事博士后研究工作,2007—2008年在英国伯明翰大学材料冶金系任高级研究员。主要研究方向:基于统计分析的焊接冶金、焊接材料优化设计和焊接材料质量控制,轻金属的精密连接,纳米热喷涂等。已发表论文200余篇,专著10本,获授权专利50余项。zhxlee@bjut.edu.cn   
作者简介:  李红,北京工业大学材料与制造学部教授,博士研究生导师。2006年获北京科技大学材料加工工程博士学位,2006—2008年在北京工业大学材料学院做博士后研究,2012—2013年在德国多特蒙德工业大学做国家公派访问学者。主要研究方向为轻合金连接技术、异种材料连接技术、微纳尺度连接材料及界面。主持科研项目9项,参加国家/省部级级科研项目16项。发表科研论文80余篇,获授权中国国家发明专利16项,出版译著2本,参编专著2本。获中国机械工业科学技术奖一等奖(2015)和二等奖(2019)、河南省科技进步奖二等奖(2018)。
引用本文:    
李红, 陈梓嵩, 栗卓新, 祝静, Erika Hodúlová. 电接触领域导电润滑添加剂及其摩擦学行为的研究现状[J]. 材料导报, 2023, 37(13): 21100218-8.
LI Hong, CHEN Zisong, LI Zhuoxin, ZHU Jing, Erika Hodúlová. Research Status of Conductive Lubricated Additives for Applications in Electrical Contact and Tribology Behavior. Materials Reports, 2023, 37(13): 21100218-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100218  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21100218
1 Braunovic M, Konchits V, Myshkin N, et al. Electrical contacts fundamentals, applications and technology, Mechanical Industry Press, China, 2010 (in Chinese).
布朗诺维克, 康奇兹, 米西金, 等. 电接触理论、应用与技术, 机械工业出版社, 2010.
2 Song J, Schinow V. Wear, 2015, 330, 400.
3 Wang Y A, Li J X, Yan Y, et al. Tribology International, 2012, 50, 26.
4 Li S S, Huang F X, Wang Z, et al. Materials Reports, 2008, 22(S1), 303 (in Chinese).
李司山, 黄福祥, 汪振, 等. 材料导报, 2008, 22(S1), 303.
5 Fan X, Xia Y, Wang L, et al. Tribology Letters, 2014, 53(1), 281.
6 Wang Z, Xia Y, Liu Z. Lubrication Science, 2012, 24(4), 174.
7 Wang Z, Xia Y, Liu Z, et al. Tribology Letters, 2012, 46(1), 33.
8 Muetze A, Tamminen J, Ahola J. IEEE Transactions on Industry Applications, 2011, 47(4), 1767.
9 Tischmacher H, Gattermann S, Kriese M, et al. In:Proceedings of the IECON 2010 -36th Annual Conference on IEEE Industrial Electronics Society. Glendale, 2010.
10 Willwerth A, Roman M. In:Proceedings of the 2013 IEEE Transportation Electrification Conference and Expo (ITEC). Dearborn, 2013.
11 Senatore A. Lubricants, 2020, 8(4), 48.
12 Karki A, Phuyal S, Tuladhar D, et al. Applied System Innovation, 2020, 3(3), 35.
13 Mustafa W, Dassenoy F, Sarno M, et al. Lubrication Science, 2022, 34(1), 1.
14 Ge X Y. Electrical conductive theory and lubrication technology of conductive grease in electric transmission/transformation equipment. Ph. D. Thesis. North China Electric Power University, China, 2016.
葛翔宇. 电力复合脂在输变电设备中的导电理论与润滑技术研究. 博士学位论文, 华北电力大学, 2016.
15 Huo M, Wu H, Xie H, et al. Tribology International, 2020, 151, 106378.
16 Qi X, Jia Z, Yang Y, et al. Tribology International, 2011, 44(7-8), 805.
17 Suzumura J. Foreign Rolling Stock, 2018, 57(1), 42.
18 Dai W, Kheireddin B, Gao H, et al. Tribology International, 2016, 102, 88.
19 Li X W, Wang G G, Qiang C M. Electric Power Construction, 2011, 32(8), 99 (in Chinese).
李星伟, 王国刚, 强春媚. 电力建设, 2011, 32(8), 99.
20 El-Adly R A, Turky G M. Egyptian Journal of Petroleum, 2018, 27(2), 209.
21 Si L, Pan Y, Zhang X, et al. Industrial Lubrication and Tribology, 2018, 70(9), 1714.
22 Luniak M, Monser H P, Brod V, et al. In: Proceedings of the First International IEEE Conference on Polymers and Adhesives in Microelectro-nics and Photonics Incorporating POLY, PEP & Adhesives in Electronics Proceedings (Cat No 01TH8592). Potsdam, 2001, pp. 314.
23 Luniak M, Roellig M, Wolter K J. In: Proceedings of the 26th International Spring Seminar on Electronics Technology: Integrated Management of Electronic Materials Production. High Tatras, 2003, pp. 104.
24 Wang P, Jin S L, Li X H, et al. Guangzhou Chemical Industry, 2011, 39(5), 62 (in Chinese).
王萍, 金石磊, 李小慧, 等. 广州化工, 2011, 39(5), 62.
25 Abad M D, Sánchez-López J C. Wear, 2013, 297(1-2), 943.
26 Shen C. Study on preparation and conductivity of molybdenum disulfide-mocene composite functional materials. Ph. D. Thesis, Harbin University of Science and Technology, China, 2020.
沈沉. 二硫化钼-茂类复合功能材料的制备及导电性能研究. 博士学位论文, 哈尔滨理工大学, 2020.
27 Li M, Gao C X, Zhang D M, et al. Chinese Journal of High Pressure Physics, 2008, 22(1), 43.
李明, 高春晓, 张冬梅, 等. 高压物理学报, 2008, 22(1), 43.
28 Xu B H, Lin B Z, Chen Z J, et al. Journal of Colloid & Interface Science, 2009, 330(1), 220.
29 Yadgarov L, Petrone V, Rosentsveig R, et al. Wear, 2013, 297(1-2), 1103.
30 Zhou L H, Wei X C, Ma Z P, et al. Applied Surfaceence, 2017, 407, 21.
31 Rabaso P, Ville F, Dassenoy F,et al. Wear, 2014, 320(1-2), 161.
32 Xu Y, Hu E Z, Hu K H, et al. Tribology International, 2015, 92, 172.
33 Kalin M, Kogovšek J, Remškar M. Wear, 2013, 303(1-2), 480.
34 Wan Q, Jin Y, Sun P, et al. Journal of Nanoparticle Research, 2014, 16(5), 1.
35 Koshy C P, Rajendrakumar P K, Thottackkad M V. Wear, 2015, 330, 288.
36 Wu N, Hu N, Zhou G, et al. Journal of Experimental Nanoscience, 2018, 13(1), 27.
37 Savage R H. Journal of Applied Physics, 1948, 19(1), 1.
38 Dudder G J, Zhao X, Krick B, et al. Tribology Letters, 2011, 42(2), 203.
39 Moustafa S F, El-Badry S A, Sanad A M, et al. Wear, 2002, 253(7-8), 699.
40 Zhang H J, Zhang Z Z, Guo F. Tribology Transactions, 2011, 54(3), 417.
41 Choi Y, Lee C, Huang Y, et al. Current Applied Physics, 2009, 9(2), E124.
42 Yu H, Xu Y, Shi P, et al. Surface and Coatings Technology, 2008, 203(1-2), 28.
43 Tepper S. Wear, 2002, 252(1-2), 63.
44 Tao J M, Hong P, Chen X F, et al. Journal of Materials Engineering, 2017, 45(4), 128 (in Chinese).
陶静梅, 洪鹏, 陈小丰, 等. 材料工程, 2017, 45(4), 128.
45 Dai L F, An L B, Chen J. Journal of Aeronautical Materials, 2016, 36(5), 90 (in Chinese).
代利峰, 安立宝, 陈佳. 航空材料学报, 2016, 36(5), 90.
46 Hong H, Thomas D, Waynick A, et al. Journal of Nanoparticle Research, 2010, 12(2), 529.
47 Liu C, Xia Y Q, Cao Z F. Tribology, 2015, 35(4), 393 (in Chinese).
刘椿, 夏延秋, 曹正锋. 摩擦学学报, 2015, 35(4), 393.
48 Christensen G, Yang J, Lou D, et al. Synthetic Metals, 2020, 268, 116496.
49 Shahnazar S, Bagheri S, Hamid S A. International Journal of Hydrogen Energy, 2016, 41(4), 3153.
50 Chen C, Chen X, Xu L, et al. Carbon, 2005, 43(8), 1660.
51 Chauveau V, Mazuyer D, Dassenoy F, et al. Tribology Letters, 2012, 47(3), 467.
52 Kim K S, Lee H J, Lee C, et al. ACS Nano, 2011, 5(6), 5107.
53 Kitt A L, Qi Z, Remi S, et al. Nano Letters, 2013, 13(6), 2605.
54 Felix Wählischa, Judith Hotha, Christian Held, et al. Wear, 2013, 300(1-2), 78.
55 Berman D, Erdemir A, Sumant A V. Materials Today, 2014, 17(1), 31.
56 Penkov O, Kim H J, Kim H J, et al. International Journal of Precision Engineering & Manufacturing, 2014, 15(3), 577.
57 Guo W, Yin J, Qiu H, et al. Friction, 2014, 2(3), 209.
58 Berman D, Erdemir A, Sumant A V. Carbon, 2013, 54, 454.
59 Huang H D, Tu J P, Gan L P, et al. Wear, 2006, 261(2), 140.
60 Zhang W, Zhou M, Zhu H, et al. Journal of Physics D Applied Physics, 2011, 44(20), 2083.
61 Yoshino Y, Inoue K, Takeuchi M, et al. Nanoscale, 2013, 5(7), 3063.
62 Pershin V F, Ovchinnikov K A, Alsilo A A, et al. Nanotechnologies in Russia, 2018, 13(5-6), 344.
63 Ye C, Liu W, Chen Y, et al. Chemical Communications (Cambridge, England), 2001, 21, 2244.
64 Zhou F, Liang Y, Liu W. Cheminform, 2009, 38(9), 2590.
65 Lu R, Nanao H, Kobayashi K, et al. Journal of the Japan Petroleum Institute, 2010, 53(1), 55.
66 Zhou Y, Qu J. ACS Applied Materials & Interfaces, 2016, 9(4), 3209.
67 Wu L N. Preparation research, performance study and finite element analysis of conductive lubricating grease. Ph. D. Thesis, North China Electric Power University, China, 2013.
吴礼宁. 导电润滑脂的制备、性能研究及有限元分析. 博士学位论文, 华北电力大学, 2013.
68 Cao Z F, Xia Y Q, Liu L H, et al. Tribology International, 2018, 130, 27.
69 Yang X, Meng Y, Tian Y. Tribology Letters, 2014, 56(1), 161.
70 Huang G W, Yu Q L, Ma Z F, et al. Friction, 2019, 7(1), 18.
71 Greig D, Bube R H. American Journal of Physics, 1969, 40(5), 43.
72 Palacio M, Bhushan B. Tribology Letters, 2010, 40(2), 247.
73 Cai M, Yu Q, Liu W, et al. Chemical Society Reviews, 2020, 49(21), 7753.
74 Liu X Q, Zhou F, Liang Y M, et al. Wear, 2006, 261(10), 1174.
75 Cai M, Liang Y, Feng Z, et al. Wear, 2013, 306(1-2), 197.
76 Kamimura H, Kubo T, Minami I, et al. Tribology International, 2007, 40(4), 620.
77 Viesca J L, Hernández B A, González R, et al. Wear, 2010, 269(1-2), 112.
78 Qu J, Chi M, Meyer H M, et al. Tribology Letters, 2011, 43(2), 205.
79 Qu J, Bansal D G, Yu B, et al. ACS Applied Materials & Interfaces, 2012, 4(2), 997.
80 Qu J, Luo H, Chi M, et al. Tribology International, 2014, 71, 88.
81 Barnhill W C, Qu J, Luo H, et al. ACS Applied Materials & Interfaces, 2014, 6(24), 22585.
82 Landauer A K, Barnhill W C, Qu J. Wear, 2016, 354-355, 78.
83 Sharma V, Doerr N, Aswath P B. RSC Advances, 2016, 6(27), 22341.
84 Zhou Y, Leonard D N, Guo W, et al. Scientific Reports, 2017, 7, 8426.
85 Dyck O, Leonard D N, Edge L F, et al. Advanced Materials Interfaces, 2017, 4(21), 1700622.
86 Guo W, Zhou Y, Sang X, et al. ACS Applied Materials & Interfaces, 2017, 4(21), 1700622.
87 Xu Y, Peng Y, Dearn K D, et al. Wear, 2015, 342, 297.
88 Li Z, Wan Q, Li G, et al. Materialwissenschaft und Werkstofftechnik, 2019, 50(1), 52.
89 Li Z X, Wan Q, Yuan T, et al. Journal of Materials Engineering and Performance, 2019, 28(5), 2788.
90 Ge X, Xia Y Q, Shu Z, et al. Friction, 2015, 3(1), 56.
[1] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[2] 曹茂炅, 王影娴, 刘志丹. 废弃生物质基生物原油制备可再生润滑油的潜力、途径和挑战[J]. 材料导报, 2023, 37(10): 22120087-10.
[3] 王慧鹏, 李鹏, 江聪, 朱兴高, 赵运才. 国内自润滑关节轴承试验机研制现状及展望[J]. 材料导报, 2022, 36(Z1): 22030131-4.
[4] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[5] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[6] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[7] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[8] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[9] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[10] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[11] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[12] 邓凯文, 牛荣军, 孙小波, 郭军力, 邓四二. 石墨烯改性多孔聚酰亚胺轴承保持架材料性能研究[J]. 材料导报, 2022, 36(17): 21030176-5.
[13] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[14] 陈丽, 黄银, 于元烈. 石墨烯基纳米复合薄膜及其摩擦学研究进展[J]. 材料导报, 2022, 36(11): 20090218-8.
[15] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed