Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24030199-7    https://doi.org/10.11896/cldb.24030199
  无机非金属及其复合材料 |
磨细凝灰岩制备机制砂混凝土力学性能研究
夏益健1,2, 张宇1,2,*, 张云升1,2,3, 朱微微3, 朱文轩1,2
1 兰州理工大学土木工程学院,兰州 730050
2 甘肃省先进土木工程材料工程研究中心,兰州 730050
3 东南大学材料科学与工程学院,南京 211189
Mechanical Properties of Machine-made Sand Concrete Prepared from Finely Ground Tuff
XIA Yijian1,2, ZHANG Yu1,2,*, ZHANG Yunsheng1,2,3, ZHU Weiwei3, ZHU Wenxuan1,2
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Gansu Advanced Civil Engineering Materials Engineering Research Center, Lanzhou 730050, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 19926KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究凝灰岩石粉掺量(0%、10%、20%、30%、40%)、细度(5.58%、6.98%、7.56%和9.23%)和复掺粉煤灰、矿粉对机制砂混凝土工作性能、抗压和抗折强度的影响。利用SEM、XRD、NMR等分析技术研究了掺凝灰岩石粉混凝土的水化产物和孔结构。试验结果表明:随着凝灰岩石粉掺量增加,混凝土坍落度呈先增大后减小的趋势,抗压与抗折强度下降,孔径增大;凝灰岩石粉细度对混凝土工作性能与抗压、抗折性能影响较小;复掺粉煤灰和矿粉可以提升混凝土28 d力学强度,增加小孔的数量,但由于粉煤灰与矿粉级配分布较大,大孔的数量也随之增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏益健
张宇
张云升
朱微微
朱文轩
关键词:  凝灰岩  机制砂混凝土  力学性能  石粉    
Abstract: In this work, the variation of working performance, compressive and flexural strength of machine-made sand concrete were studied through the changes in gelation composition such as tuff powder content (0%, 10%, 20%, 30%, 40%), tuff powder fineness (5.58%, 6.98%, 7.56% and 9.23%) and compound mixing of fly ash and mineral powder. SEM, XRD, NMR and other analytical techniques were used to study the hydration products and pore structure of tuff-mixed pulverized concrete. The test results show that as the amount of tuff powder increases, the slump of concrete increases first and then decreases, the compressive and flexural strength decreases, and the pore size increases greatly. The fineness of tuff powder has a slight effect on the working performance, compressive and flexural properties. The compound mixing of fly ash and mineral powder can improve the mechanical strength of concrete of 28 d and increase the number of small holes, but the number of large holes also increases due to the large gradation distribution of fly ash and mineral powder.
Key words:  tuff    manufactured sand concrete    mechanical property    rock powder
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52208249;U21A20150;52208292); 甘肃省青年科学基金(22JR5RA288); 甘肃省高等学校自然科学创新基金(2022CYZC-25); 甘肃省绿色智慧公路关键技术示范项目(21ZD3GA002); 公路混凝土桥梁耐久性关键技术,高性能土木工程材料国家重点实验室(2022CEM009)
通讯作者:  *张宇,兰州理工大学土木工程学院讲师,红柳优青,硕士研究生导师。主要研究方向为机制砂混凝土、3D打印混凝土、固废资源化利用。yzhang20210036@163.com   
作者简介:  夏益健,现为兰州理工大学土木工程学院硕士研究生。目前主要从事石粉固废再利用混凝土研究。
引用本文:    
夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
XIA Yijian, ZHANG Yu, ZHANG Yunsheng, ZHU Weiwei, ZHU Wenxuan. Mechanical Properties of Machine-made Sand Concrete Prepared from Finely Ground Tuff. Materials Reports, 2025, 39(9): 24030199-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030199  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24030199
1 Cai G, Noguchi T, Degee H, et al. Environmental Science and Pollution Research, 2016, 23(8), 7220.
2 He Shibi, Chen Taihong, An Xinyou, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(5), 1572. (in Chinese).
何仕碧, 陈太红, 安辛友, 等. 硅酸盐通报, 2018, 37(5), 1572.
3 Taylor H F W. Cement chemistry, Academic Press, London, 1990, pp. 277.
4 Liguori B, Iucolano F, DE Gennaro B, et al. Construction and Building Materials, 2015, 99, 272.
5 Biricik H, Karapinar I S. Advances in Cement Research, 2020, 32(3), 91.
6 Shi Y, LI X, LI Y, et al. Frontiers in Materials, 2020, 7, 595997.
7 Fazilati M, Golafshani E M. Construction and Building Materials, 2020, 230, 117087.
8 Türkmenolu A G T A. Cement and Concrete Research, 2002, 32(4), 629.
9 Li Yusha. Study on the effect of volcanic rock powder on the properties of cement-based materials in Baoshan area Yunnan Province. Master’s Thesis, Central South University, China, 2011(in Chinese).
李玉莎. 云南保山地区火山岩质粉末对水泥基材料性能影响的研究, 硕士学位论文, 中南大学, 2011.
10 Li Xiang, Shi Yan, Li Jiazheng, et al. Journal of Building Materials, 2017, 20(3), 435(in Chinese).
李响, 石妍, 李家正, 等. 建筑材料学报, 2017, 20(3), 435.
11 Ministry of Construction of the People’s Republic of China. Standard for performance test methods of ordinary concrete mixtures: GB/T50080-2002, China Building Industry Press, China, 2002(in Chinese).
中华人民共和国建设部, 普通混凝土拌合物性能试验方法标准:GB/T50080-2002, 中国建筑工业出版社, 2002.
12 Ministry of Construction of the People’s Republic of China. Standard for test methods for mechanical properties of ordinary concrete:GB/T50081-2002, China Building Industry Press, China, 2002(in Chinese)
中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T50081-2002, 中国建筑工业出版社, 2002.
13 Liu S, Fang P, Wang H, et al. Powder Technology, 2021, 380, 59.
14 Qiao H X, Liang J K, Li Y K, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(2), 431(in Chinese).
乔宏霞, 梁金科, 李元可, 等. 硅酸盐通报, 2019, 38(2), 431
15 Tian Haozheng, Qiao Hongxia, Feng Qiong, et al. Materials Reports, 2024, 38(6), 138(in Chinese).
田浩正, 乔宏霞, 冯琼, 等. 材料导报, 2024, 38(6), 138.
16 Dong M, Elchalakani M, Karrech A. Construction and Building Materials, 2020, 236, 117611.
17 Liu G, Florea M V A, Brouwers H J H. Journal of Cleaner Production, 2019, 235, 461.
18 Xiao Liguang, Li Zhengpeng. Applied Chemical Industry, 2023, 52(8), 2284(in Chinese).
肖力光, 李正鹏. 应用化工, 2023, 52(8), 2284.
19 Bai Jiajia, Ling Nan, Wang Jianmin, et al. Journal of Water Resources & Water Engineering, 2022, 33(5), 154(in Chinese).
白佳佳, 林楠, 王建民, 等. 水资源与水工程学报, 2022, 33(5), 154.
20 Wu Z W, Lian H Z. High performance concrete, China Railway Publis-hing House, 1999, pp. 42(in Chinese).
吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999, pp. 42.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[3] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[4] 陈新明, 陈姣姣, 刘晓辉, 焦华喆, 杨志, 杨柳华. 基于压滤效应影响的废弃石粉-黏土浆液性能研究[J]. 材料导报, 2025, 39(9): 23060049-10.
[5] 李大虎, 李晓丽, 赵晓泽, 郭长旭. 活化煤矸石粉对砒砂岩水泥复合土强度影响的试验研究[J]. 材料导报, 2025, 39(9): 24010148-6.
[6] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[7] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[8] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[9] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[10] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[11] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed