Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 23060049-10    https://doi.org/10.11896/cldb.23060049
  无机非金属及其复合材料 |
基于压滤效应影响的废弃石粉-黏土浆液性能研究
陈新明1,2,3,*, 陈姣姣1,2, 刘晓辉3,4, 焦华喆1,2,3, 杨志3,5, 杨柳华1,2,3
1 河南理工大学土木工程学院,河南 焦作 454150
2 河南理工大学河南省矿产资源绿色高效开采与综合利用重点实验室,河南 焦作 454150
3 煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454150
4 华北科技学院安全工程学院,河北 廊坊 065000
5 北京科技大学土木与资源工程学院,北京 101407
Study on the Properties of Waste Stone Powder-Clay Slurry Based on the Influence of Filtration Effect
CHEN Xinming1,2,3,*, CHEN Jiaojiao1,2, LIU Xiaohui3,4, JIAO Huazhe1,2,3, YANG Zhi3,5, YANG Liuhua1,2,3
1 School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454150, Henan, China
2 Henan Key Laboratory of Green and Efficient Mining and Comprehensive Utilization of Mineral Resources, Henan Polytechnic University, Jiaozuo 454150, Henan, China
3 Collaborative Innovation Center for Safe Production and Clean and Efficient Utilization of Coal, Jiaozuo 454150, Henan, China
4 School of Safety Engineering, North China Institute of Science and Technology, Langfang 065000, Hebei, China
5 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 101407, China
下载:  全 文 ( PDF ) ( 18436KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用一种灌浆材料压滤效应模拟装置(FSD),开展对考虑灌浆压力、浆体流变、黏土灰分、浆液浓度和废弃石粉粒度组成(FSD影响因素)的浆液性能研究。结合FTIR、TG-DTG、SEM、EDS、AFM、ICP-AES和IC微观表征手段,解释其性能发展机理。受压滤效应影响,浆液碱性环境变强,活性颗粒数量增多,CaCO3与黏粒晶体之间充分团聚,结晶程度增加;阳离子交换容量升高,钙硅铝基相和硅铝酸盐聚合体生成量增加。基体颗粒间表面水撑开晶层,塑性黏度和屈服应力降低。游离氧化钙减少,浆液硬化后固结收缩率均小于1%。水灰比减小,浆液灌入裂隙固结成模和间歇总时间缩短。单位体积内,团簇状聚合体结构物分散空间被压缩,Al3+和Ca2+的溶出率降低。在煤矿灌浆行业中使用废弃石粉和黏土,不仅可以降低项目成本,还可以减少水土流失和土污染。采用研究提出的最佳的浆液配比和灌浆压力进行试验,结果表明,浆液灌浆性能良好,可被考虑用于矿区岩溶裂隙带形式的充填。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈新明
陈姣姣
刘晓辉
焦华喆
杨志
杨柳华
关键词:  废弃石粉  黏土  灌浆浆液  压滤效应  灌浆性能  性能发展机理    
Abstract: A grouting material filter pressure effect simulation device (FSD) was used to study the performance of grout considering grouting pressure, slurry rheology, clay ash content, slurry concentration and particle size composition of waste stone powder (FSD influencing factors). Furthermore, using FTIR, TG-DTG, SEM, EDS, AFM, ICP-AES, and IC microscopic characterization methods, the mechanism of performance development were explained. After the pressure filtration effect, the alkaline environment of the slurry becomes stronger, the number of active particles increases, and CaCO3 fully agglomerates with clay crystals, increasing the degree of crystallization. The cation exchange capacity increases, and the amount of calcium silicon aluminum based phase and silicon aluminum salt aggregates generated increases. The surface water between the matrix particles expands the crystal layer, reducing the plastic viscosity and yield stress. Free calcium oxide decreases, and the conso-lidation shrinkage rate of the hardened slurry is less than 1%. The water cement ratio is reduced, and the grouting solution is injected into the cracks to solidify into the mold and shorten the total interval time. Within a unit volume, the dispersion space of clustered polymer structures is compressed, and the dissolution rates of Al3+ and Ca2+ decrease. The use of waste rock powder and clay in the coal mine grouting industry can not only reduce project costs, but also reduce soil erosion and pollution. Due to the optimal slurry ratio and grouting pressure which were proposed here, the experimental results show that the grouting performance of the slurry is good, so it can be considered for filling karst fracture zones in mining areas.
Key words:  waste stone powder    clay    grouting slurry    the effect of the filter press    slurry property    performance development mechanism
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  X751  
基金资助: 山东省科技型中小型企业创新能力提升工程项目(2022TSG2077);国家自然科学基金(52074121)
通讯作者:  *陈新明,博士、教授级高级工程师,河南理工大学土木工程学院硕士研究生导师。目前主要从事采矿工程、岩土工程施工、矿井建设等方面的研究。zazafyl@yeah.net   
引用本文:    
陈新明, 陈姣姣, 刘晓辉, 焦华喆, 杨志, 杨柳华. 基于压滤效应影响的废弃石粉-黏土浆液性能研究[J]. 材料导报, 2025, 39(9): 23060049-10.
CHEN Xinming, CHEN Jiaojiao, LIU Xiaohui, JIAO Huazhe, YANG Zhi, YANG Liuhua. Study on the Properties of Waste Stone Powder-Clay Slurry Based on the Influence of Filtration Effect. Materials Reports, 2025, 39(9): 23060049-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23060049  或          https://www.mater-rep.com/CN/Y2025/V39/I9/23060049
1 Nong Y Y. Development and application performance of polyvinyl formaldehyde-montmorillonite composite particles. Master’s Thesis, China University of Geosciences (Beijing), China, 2021(in Chinese).
农迎逸. 聚乙烯醇缩甲醛-蒙脱石复合颗粒的研制及应用性能. 硕士学位论文, 中国地质大学(北京), 2021
2 Liang Y, Zhuang Y, Chen Y F, et al. Materialpruefung:Werkstoffe und Bauteile, Forschung Prufung Anwendung, 2018, 60(11), 111260.
3 Xu S, Zeng L, Li C, et al. Fresenius Environmental Bulletin, 2018, 27(6), 4156.
4 Ga A, Bu B. Construction and Building Materials, 2021, 284, 122789.
5 Bayesteh H, Sharifi M. Construction and Building Materials, 2020, 262(3), 120792.
6 Dixit A, Du H, Pang S D. Construction and Building Materials, 2020, 263, 120250.
7 Zhang C, Yang J S, Fu J Y, et al. Journal of Central South University, 2019, 26(7), 1863.
8 Zhu Y G. Coal and Chemical Industry, 2023, 46(3), 111(in Chinese).
朱岩光. 煤炭与化工, 2023, 46(3), 111.
9 Su P, Liu F, Yao P, et al. Advances in Civil Engineering, 2021, 2021(10), 1.
10 Zhang J, Li S, Li Z, et al. Construction and Building Materials, 2020, 260(2-3), 119704.
11 Li Z F, Chen J P, Yang L, et al. Chinese Journal of Engineering, 2021, 43(6), 768(in Chinese).
李召峰, 陈经棚, 杨磊, 等. 工程科学学报, 2021, 43(6), 768.
12 Mashaan N, Yusoff N I M, Saad I. Sustainability, DOI:10.13140/RG.2.2.27371.05920.
13 Roohbakhshan, Armin, Kalantari, et al. Annals of the Faculty of Engineering Hunedoara-International Journal of Engineering, 2013, 11(4), 177.
14 Gu J, Moon K, Jegal H, et al. Journal of The Korean Society of Combustion, 2022, 37(8), 262.
15 Guo L, Zhou M, Wang X, et al. Construction and Building Materials, 2022, 328, 126997.
16 He H, Wang Y, Wang J. Construction and Building Materials, 2020, 250, 118828.
17 Song N, Wang Q, Wang C, et al. IOP Conference Series Earth and Environmental Science, 2021, 693(1), 012097.
18 Li Y G, Jiang H Q, Wang L J. Engineering Technology, 2021, 42(1), 478.
19 Chen W F, Xing Z Q, Wang K X, et al. Water Resources and Hydropower Engineering, 2021, 52(5), 196 (in Chinese).
陈文夫, 邢占清, 王克祥, 等. 水利水电技术, 2021, 52(5), 196.
20 Liang J W, Song Z L, Wang X, et al. Water Resources and Hydropower Engineering, 2015, 46(10), 133 (in Chinese).
梁经纬, 宋子龙, 王祥, 等. 水利水电技术, 2015, 46(10), 133.
21 Chen Y B, Gao M A, Chen M X, et al. Chinese Journal of Rock Mechanics and Engineering, 2001(S1), 1809 (in Chinese).
陈义斌, 高鸣安, 陈明祥, 等. 岩石力学与工程学报, 2001(S1), 1809.
22 Huang L W, Wang K X, Huang J C, et al. Journal of Hydraulic and Architectural Engineering, 2021, 19(2), 155(in Chinese).
黄立维, 王克祥, 黄纪村, 等. 水利与建筑工程学报, 2021, 19(2), 155.
23 Zhu G, Zhang Q, Liu R, et al. Geofluids, 2021, 387, 661399.
24 Sakakibara S, Koyama T, Shimizu H. CFD-DEM Simulations for Injection of cement-based grout-the effect of rock fracture roughness, DOI:10. 1201/b16955-136.
25 Yin T, Zhang Z, Huang X, et al. Tunnelling and Underground Space Technology, 2021, 111, 103856.
26 Wang J R, Jing Q S, Liu B, et al. Abstract collection of papers of the 2020 academic annual meeting of the Henan Chemical Society, 2020, pp.1 (in Chinese) .
王静茹, 井强山, 刘冰, 等. 河南省化学会2020年学术年会论文摘要集, 2020, pp.1.
27 Niu R J, Huang P, Li J T, et al. Phosphate Fertilizer & Compound Fertilizer, 2021, 36(9), 38(in Chinese).
牛仁杰, 黄平, 李江滔, 等. 磷肥与复肥, 2021, 36(9), 38.
28 Wu X L, Zhang Y Y, Long H M, et al. Science & Technology Vision, 2022(15), 48 (in Chinese).
吴雪兰, 张洋洋, 龙红明, 等. 科技视界, 2022(15), 48.
29 Chen W Y, Zhang Z X, Meng E C, et al. Chinese Journal of the Chinese Ceramic Bulletin, 2023, 42(2), 439(in Chinese).
陈文瑶, 张卓翔, 孟二从, 等. 硅酸盐通报, 2023, 42(2), 439.
30 Yu Y Y, Jing Q S, Yu X H, et al. Mineral Protection and Utilization, 2022, 42(4), 60(in Chinese)
于媛媛, 井强山, 余雪华, 等. 矿产保护与利用, 2022, 42(4), 60.
31 Sun R R, Wang Z, Huang F L, et al. Materials Reports, 2021, 35(Z1), 211(in Chinese).
孙茹茹, 王振, 黄法礼, 等. 材料导报, 2021, 35(Z1), 211(in Chinese).
32 Cheng G, Fan W, Yu N Y, et al. Rock and Soil Mechanics, 2023(S1), 1(in Chinese).
程光, 范文, 于宁宇, 等. 岩土力学, 2023(S1), 1.
33 Zuo X Y. Molecular simulation of carbon dioxide adsorption and diffusion by clay minerals. Master’s Thesis, Taiyuan University of Technology, China, 2019 (in Chinese).
左骁遥. 粘土矿物对二氧化碳吸附及扩散的分子模拟. 硕士学位论文, 太原理工大学, 2019.
34 Cui J Q. Study on the influence of clay minerals on pore structure and water absorption characteristics of mudstone. Master’s Thesis, Taiyuan University of Technology, China, 2019 (in Chinese)
崔家庆. 粘土类矿物对泥岩孔隙结构及吸水特性的影响研究. 硕士学位论文, 太原理工大学, 2019.
35 Lian B B. Effect of clay mineral content on swelling of rockfall soil under different ion concentrations. Master’s Thesis, Fujian Agriculture and Forestry University, China, 2019 (in Chinese)
连彬彬. 不同离子浓度下粘土矿物含量对崩岗土体膨胀性的影响. 硕士学位论文, 福建农林大学, 2019.
36 Gou K Y. Theoretical study on adsorption characteristics of clay mineral montmorillonite. Master’s Thesis, Guangxi University of Science and Technology, China, 2020 (in Chinese).
苟开元. 粘土矿物蒙脱石吸附特性理论研究. 硕士学位论文, 广西科技大学, 2020.
37 Awan A A. Materials, 2021, 14(14), 3829.
38 Tang M, Yang S, Guo J F, et al. Journal of Building Materials, 2022, 25(2), 191(in Chinese)
汤明, 杨松, 郭加付, 等. 建筑材料学报, 2022, 25(2), 191.
39 Huang J T. Structural Chemistry, 1996(6), 438(in Chinese).
黄继泰. 结构化学, 1996(6), 438.
40 Chauffeton C, Wallez G. Journal of the American Ceramic Society, 2022(7), 105.
41 Korshunov D M, Boguslavskiy M A. Lithology and Mineral Resources, 2021, 56(2), 189.
[1] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[2] 林海, 时花豹, 周创兵, 吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090001-6.
[3] 冯国瑞, 姚鑫, 王帅, 姚顺, 韩艳娜, 黄丽, 侯凯. 黏土矿物材料在煤矿注浆领域的研究进展与前景展望[J]. 材料导报, 2024, 38(19): 23070167-11.
[4] 吴浪, 鲍蓉, 戴健, 雷斌. 石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型[J]. 材料导报, 2024, 38(15): 23020253-6.
[5] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[6] 尚玺, 赵啟行, 杨华明. 黏土矿物基催化材料的研究进展[J]. 材料导报, 2023, 37(17): 21110283-9.
[7] 杨小龙, 申爱琴, 刘贵勇, 蒋宜馨, 吴寒松. 考虑隧道阻燃的纳米黏土/ATH复合改性沥青优化设计[J]. 材料导报, 2022, 36(21): 20090343-8.
[8] 孙志雅, 孟宇航, 杨华明. 黏土矿物基载药体系的研究进展[J]. 材料导报, 2022, 36(2): 20110152-10.
[9] 解维闵, 梁晓正, 赵晓光, 杨华明. 黏土矿物基纳米复合阻燃材料的研究进展[J]. 材料导报, 2021, 35(23): 23192-23204.
[10] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[11] 卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
[12] 王林峰, 田耘, 曾彪, 翁其能. 高液限红黏土的压实特性与路基填筑方案[J]. 材料导报, 2019, 33(10): 1666-1670.
[13] 范兆如, 周守勇, 李梅生, 赵宜江, 邢卫红. 基于低品位凹凸棒石黏土的陶瓷膜支撑体制备[J]. 材料导报, 2018, 32(20): 3638-3644.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed