Study on the Properties of Waste Stone Powder-Clay Slurry Based on the Influence of Filtration Effect
CHEN Xinming1,2,3,*, CHEN Jiaojiao1,2, LIU Xiaohui3,4, JIAO Huazhe1,2,3, YANG Zhi3,5, YANG Liuhua1,2,3
1 School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454150, Henan, China 2 Henan Key Laboratory of Green and Efficient Mining and Comprehensive Utilization of Mineral Resources, Henan Polytechnic University, Jiaozuo 454150, Henan, China 3 Collaborative Innovation Center for Safe Production and Clean and Efficient Utilization of Coal, Jiaozuo 454150, Henan, China 4 School of Safety Engineering, North China Institute of Science and Technology, Langfang 065000, Hebei, China 5 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 101407, China
Abstract: A grouting material filter pressure effect simulation device (FSD) was used to study the performance of grout considering grouting pressure, slurry rheology, clay ash content, slurry concentration and particle size composition of waste stone powder (FSD influencing factors). Furthermore, using FTIR, TG-DTG, SEM, EDS, AFM, ICP-AES, and IC microscopic characterization methods, the mechanism of performance development were explained. After the pressure filtration effect, the alkaline environment of the slurry becomes stronger, the number of active particles increases, and CaCO3 fully agglomerates with clay crystals, increasing the degree of crystallization. The cation exchange capacity increases, and the amount of calcium silicon aluminum based phase and silicon aluminum salt aggregates generated increases. The surface water between the matrix particles expands the crystal layer, reducing the plastic viscosity and yield stress. Free calcium oxide decreases, and the conso-lidation shrinkage rate of the hardened slurry is less than 1%. The water cement ratio is reduced, and the grouting solution is injected into the cracks to solidify into the mold and shorten the total interval time. Within a unit volume, the dispersion space of clustered polymer structures is compressed, and the dissolution rates of Al3+ and Ca2+ decrease. The use of waste rock powder and clay in the coal mine grouting industry can not only reduce project costs, but also reduce soil erosion and pollution. Due to the optimal slurry ratio and grouting pressure which were proposed here, the experimental results show that the grouting performance of the slurry is good, so it can be considered for filling karst fracture zones in mining areas.
陈新明, 陈姣姣, 刘晓辉, 焦华喆, 杨志, 杨柳华. 基于压滤效应影响的废弃石粉-黏土浆液性能研究[J]. 材料导报, 2025, 39(9): 23060049-10.
CHEN Xinming, CHEN Jiaojiao, LIU Xiaohui, JIAO Huazhe, YANG Zhi, YANG Liuhua. Study on the Properties of Waste Stone Powder-Clay Slurry Based on the Influence of Filtration Effect. Materials Reports, 2025, 39(9): 23060049-10.
1 Nong Y Y. Development and application performance of polyvinyl formaldehyde-montmorillonite composite particles. Master’s Thesis, China University of Geosciences (Beijing), China, 2021(in Chinese). 农迎逸. 聚乙烯醇缩甲醛-蒙脱石复合颗粒的研制及应用性能. 硕士学位论文, 中国地质大学(北京), 2021 2 Liang Y, Zhuang Y, Chen Y F, et al. Materialpruefung:Werkstoffe und Bauteile, Forschung Prufung Anwendung, 2018, 60(11), 111260. 3 Xu S, Zeng L, Li C, et al. Fresenius Environmental Bulletin, 2018, 27(6), 4156. 4 Ga A, Bu B. Construction and Building Materials, 2021, 284, 122789. 5 Bayesteh H, Sharifi M. Construction and Building Materials, 2020, 262(3), 120792. 6 Dixit A, Du H, Pang S D. Construction and Building Materials, 2020, 263, 120250. 7 Zhang C, Yang J S, Fu J Y, et al. Journal of Central South University, 2019, 26(7), 1863. 8 Zhu Y G. Coal and Chemical Industry, 2023, 46(3), 111(in Chinese). 朱岩光. 煤炭与化工, 2023, 46(3), 111. 9 Su P, Liu F, Yao P, et al. Advances in Civil Engineering, 2021, 2021(10), 1. 10 Zhang J, Li S, Li Z, et al. Construction and Building Materials, 2020, 260(2-3), 119704. 11 Li Z F, Chen J P, Yang L, et al. Chinese Journal of Engineering, 2021, 43(6), 768(in Chinese). 李召峰, 陈经棚, 杨磊, 等. 工程科学学报, 2021, 43(6), 768. 12 Mashaan N, Yusoff N I M, Saad I. Sustainability, DOI:10.13140/RG.2.2.27371.05920. 13 Roohbakhshan, Armin, Kalantari, et al. Annals of the Faculty of Engineering Hunedoara-International Journal of Engineering, 2013, 11(4), 177. 14 Gu J, Moon K, Jegal H, et al. Journal of The Korean Society of Combustion, 2022, 37(8), 262. 15 Guo L, Zhou M, Wang X, et al. Construction and Building Materials, 2022, 328, 126997. 16 He H, Wang Y, Wang J. Construction and Building Materials, 2020, 250, 118828. 17 Song N, Wang Q, Wang C, et al. IOP Conference Series Earth and Environmental Science, 2021, 693(1), 012097. 18 Li Y G, Jiang H Q, Wang L J. Engineering Technology, 2021, 42(1), 478. 19 Chen W F, Xing Z Q, Wang K X, et al. Water Resources and Hydropower Engineering, 2021, 52(5), 196 (in Chinese). 陈文夫, 邢占清, 王克祥, 等. 水利水电技术, 2021, 52(5), 196. 20 Liang J W, Song Z L, Wang X, et al. Water Resources and Hydropower Engineering, 2015, 46(10), 133 (in Chinese). 梁经纬, 宋子龙, 王祥, 等. 水利水电技术, 2015, 46(10), 133. 21 Chen Y B, Gao M A, Chen M X, et al. Chinese Journal of Rock Mechanics and Engineering, 2001(S1), 1809 (in Chinese). 陈义斌, 高鸣安, 陈明祥, 等. 岩石力学与工程学报, 2001(S1), 1809. 22 Huang L W, Wang K X, Huang J C, et al. Journal of Hydraulic and Architectural Engineering, 2021, 19(2), 155(in Chinese). 黄立维, 王克祥, 黄纪村, 等. 水利与建筑工程学报, 2021, 19(2), 155. 23 Zhu G, Zhang Q, Liu R, et al. Geofluids, 2021, 387, 661399. 24 Sakakibara S, Koyama T, Shimizu H. CFD-DEM Simulations for Injection of cement-based grout-the effect of rock fracture roughness, DOI:10. 1201/b16955-136. 25 Yin T, Zhang Z, Huang X, et al. Tunnelling and Underground Space Technology, 2021, 111, 103856. 26 Wang J R, Jing Q S, Liu B, et al. Abstract collection of papers of the 2020 academic annual meeting of the Henan Chemical Society, 2020, pp.1 (in Chinese) . 王静茹, 井强山, 刘冰, 等. 河南省化学会2020年学术年会论文摘要集, 2020, pp.1. 27 Niu R J, Huang P, Li J T, et al. Phosphate Fertilizer & Compound Fertilizer, 2021, 36(9), 38(in Chinese). 牛仁杰, 黄平, 李江滔, 等. 磷肥与复肥, 2021, 36(9), 38. 28 Wu X L, Zhang Y Y, Long H M, et al. Science & Technology Vision, 2022(15), 48 (in Chinese). 吴雪兰, 张洋洋, 龙红明, 等. 科技视界, 2022(15), 48. 29 Chen W Y, Zhang Z X, Meng E C, et al. Chinese Journal of the Chinese Ceramic Bulletin, 2023, 42(2), 439(in Chinese). 陈文瑶, 张卓翔, 孟二从, 等. 硅酸盐通报, 2023, 42(2), 439. 30 Yu Y Y, Jing Q S, Yu X H, et al. Mineral Protection and Utilization, 2022, 42(4), 60(in Chinese) 于媛媛, 井强山, 余雪华, 等. 矿产保护与利用, 2022, 42(4), 60. 31 Sun R R, Wang Z, Huang F L, et al. Materials Reports, 2021, 35(Z1), 211(in Chinese). 孙茹茹, 王振, 黄法礼, 等. 材料导报, 2021, 35(Z1), 211(in Chinese). 32 Cheng G, Fan W, Yu N Y, et al. Rock and Soil Mechanics, 2023(S1), 1(in Chinese). 程光, 范文, 于宁宇, 等. 岩土力学, 2023(S1), 1. 33 Zuo X Y. Molecular simulation of carbon dioxide adsorption and diffusion by clay minerals. Master’s Thesis, Taiyuan University of Technology, China, 2019 (in Chinese). 左骁遥. 粘土矿物对二氧化碳吸附及扩散的分子模拟. 硕士学位论文, 太原理工大学, 2019. 34 Cui J Q. Study on the influence of clay minerals on pore structure and water absorption characteristics of mudstone. Master’s Thesis, Taiyuan University of Technology, China, 2019 (in Chinese) 崔家庆. 粘土类矿物对泥岩孔隙结构及吸水特性的影响研究. 硕士学位论文, 太原理工大学, 2019. 35 Lian B B. Effect of clay mineral content on swelling of rockfall soil under different ion concentrations. Master’s Thesis, Fujian Agriculture and Forestry University, China, 2019 (in Chinese) 连彬彬. 不同离子浓度下粘土矿物含量对崩岗土体膨胀性的影响. 硕士学位论文, 福建农林大学, 2019. 36 Gou K Y. Theoretical study on adsorption characteristics of clay mineral montmorillonite. Master’s Thesis, Guangxi University of Science and Technology, China, 2020 (in Chinese). 苟开元. 粘土矿物蒙脱石吸附特性理论研究. 硕士学位论文, 广西科技大学, 2020. 37 Awan A A. Materials, 2021, 14(14), 3829. 38 Tang M, Yang S, Guo J F, et al. Journal of Building Materials, 2022, 25(2), 191(in Chinese) 汤明, 杨松, 郭加付, 等. 建筑材料学报, 2022, 25(2), 191. 39 Huang J T. Structural Chemistry, 1996(6), 438(in Chinese). 黄继泰. 结构化学, 1996(6), 438. 40 Chauffeton C, Wallez G. Journal of the American Ceramic Society, 2022(7), 105. 41 Korshunov D M, Boguslavskiy M A. Lithology and Mineral Resources, 2021, 56(2), 189.