Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21110283-9    https://doi.org/10.11896/cldb.21110283
  无机非金属及其复合材料 |
黏土矿物基催化材料的研究进展
尚玺1, 赵啟行2,3,*, 杨华明1,2,3
1 中南大学资源加工与生物工程学院,长沙 410083
2 中国地质大学(武汉)纳米矿物材料及应用教育部工程研究中心,武汉 430074
3 中国地质大学(武汉)材料与化学学院,武汉 430074
Advances in the Research of Clay Mineral-based Catalytic Materials
SHANG Xi1, ZHAO Qihang2,3,*, YANG Huaming1,2,3
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
2 Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
3 Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 20974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机污染物在环境中的大量残留对人类健康和生态环境造成严重威胁。催化反应技术具有反应迅速、氧化性强等优势,被认为是环境污染物治理十分有效的方法之一。天然黏土矿物具有微观形貌多样、表面基团丰富和成本低廉等优势,作为功能性催化剂载体材料显示出巨大的应用潜力。基于此,本文介绍了高岭石、蒙脱石、累托石、埃洛石、坡缕石等不同黏土矿物与活性组分之间的相互作用,有针对性地对黏土矿物进行功能化改性,开发适合解决环境污染问题的高性能催化材料,阐明了黏土矿物基催化材料的催化机理。最后,本文总结了黏土矿物在催化研究中的一些问题,对构建低成本、高性能黏土基催化材料高效降解污染物体系具有重要的理论指导和实际价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚玺
赵啟行
杨华明
关键词:  黏土矿物  表面性质  催化材料  有机污染物    
Abstract: Nowadays, the excessive pollutants have been a serious problem, which poses a threat to human health and ecological environment. Catalytic technology is considered to be one of the most effective methods to degrade pollutants considering its advantages of rapid reaction and strong oxidation. Natural clay mineral possesses a series of advantages including excellent structure, physicochemical property, aplenty of hydroxyl groups and low cost, which could be applied to support materials of catalyst. In this review, we discuss the interaction between different clay mineral and active component and carry out to develop high-performance catalytic materials for solving environmental problems. In addition, the catalytic mechanism of clay mineral materials is also explained clearly. Based on the summarized problems of clay mineral in catalytic research, our work will be of remarkable theoretical significance and practical values in preparing the clay-based catalytic catalysts in pollutant degradation and environmental remediation.
Key words:  clay mineral    surface property    catalytic materials    organic pollutant
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TB332  
基金资助: 湖南省研究生科研创新项目(CX20200255);国家自然科学基金(51974367)
通讯作者:  *赵啟行,中国地质大学(武汉)纳米矿物材料及应用教育部工程研究中心副教授、硕士研究生导师。2019年12月中南大学材料科学与工程专业博士毕业。目前主要从事环境矿物材料及黏土矿物表面改性等研究工作,发表论文10余篇,包括Commun.Chem.、Chem.Commun.等。zhaoqihang@cug.edu.cn
杨华明,工学博士,中南大学/中国地质大学(武汉)教授、博士研究生导师,中组部国家“万人计划”领军人才、国家杰出青年科学基金获得者、国家中青年科技创新领军人才,享受国务院政府特殊津贴。现任中国建筑材料行业黏土矿物功能材料重点实验室主任、矿物材料及其应用湖南省重点实验室主任、湖南省矿物材料国际联合实验室(国际科技创新合作基地)主任。在中南工业大学获学士、硕士和博士学位,先后在英国布里斯托大学、澳大利亚昆士兰大学、俄罗斯科学院固态化学研究所任访问学者。长期从事矿物材料、能源与环境材料、生物医学材料、材料计算、固废资源化等研究,致力于材料、矿物、化学、物理、生物医学等多学科交叉。主持国家自然科学基金、国家科技支撑、863课题、973专题等,在Adv.Funct.Mater.、Chem.Mater.、Appl.Catal.B、J.Mater.Chem.、J.Phys.Chem.、ChemComm、Adv.Mater.Interface、Am.Mineral.、Clay Clay Miner.、Appl.Clay Sci.等发表SCI论文180多篇(其中ESI高被引论文7篇,Nature指数论文8篇,封面和综述6篇),SCI引用5 000余次,授权专利32件,申请国际专利4件,撰写Elsevier著作1章,出版学术专著3部、教材3部。   
作者简介:  尚玺,2019年本科毕业于太原理工大学矿物加工工程专业,获工学学士学位。现为中南大学资源加工与生物工程学院和中国地质大学纳米矿物材料及应用教育部工程研究中心的硕士研究生,在杨华明教授的指导下进行研究。目前主要研究领域为矿物功能材料。
引用本文:    
尚玺, 赵啟行, 杨华明. 黏土矿物基催化材料的研究进展[J]. 材料导报, 2023, 37(17): 21110283-9.
SHANG Xi, ZHAO Qihang, YANG Huaming. Advances in the Research of Clay Mineral-based Catalytic Materials. Materials Reports, 2023, 37(17): 21110283-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110283  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21110283
1 Mishra A, Mehta A, Basu S. Journal of Environmental Chemical Engineering, 2018, 6(5), 6088.
2 Pandey P, Saini V K. Pillared interlayered clays for pollution remediation, Crini G, Lichtfouse E, ed. , Springer International Publishing, Cham, 2018, pp. 353.
3 Chafik T. Materials Today:Proceedings, 2021, 37, 3834.
4 Xu C, Nasrollahzadeh M, Sajjadi M, et al. Renewable and Sustainable Energy Reviews, 2019, 112, 195.
5 Baloyi J, Ntho T, Moma J. RSC Advances, 2018, 8(10), 5197.
6 Chen T, Yuan Y, Zhao Y, et al. Langmuir, 2019, 35(6), 2368.
7 Li J, Hu M, Zuo S, et al. Current Opinion in Chemical Engineering, 2018, 20, 93.
8 Ralphs K, Hardacre C, James S L. Chemical Society Reviews, 2013, 42(18), 7701.
9 Zhang L, Ran J, Qiao S Z, et al. Chemical Society Reviews, 2019, 48(20), 5184.
10 Tong H, Ouyang S, Bi Y, et al. Advanced Materials, 2012, 24(2), 229.
11 Cheng H, Zhou Y, Liu Q. 6-Kaolinite nanomaterials:preparation, properties and functional applications, Wang A, Wang W, ed., Elsevier, Netherlands, 2019, pp. 285.
12 Ma W, Hu J, Yoza B A, et al. Applied Clay Science, 2019, 175, 159.
13 Cao Z, Wang Q, Cheng H. Chinese Chemical Letters, 2021, 32(9), 2617.
14 Zhao B, Liu L, Cheng H. Applied Clay Science, 2021, 208, 106098.
15 Chiam S L, Pung S Y, Yeoh F Y. Environmental Science and Pollution Research, 2020, 27(6), 5759.
16 Kakavandi B, Takdastan A, Pourfadakari S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 329.
17 Tiya-Djowe A, Ruth N, Kamgang-Youbi G, et al. Microporous and Mesoporous Materials, 2018, 255, 148.
18 Mamaghani A H, Haghighat F, Lee C S. Chemosphere, 2019, 219, 804.
19 Gong Y, Wang L L, Xu Y Q, et al. Materials Reports, 2020, 34(Z2), 37 (in Chinese).
巩云, 王龙龙, 徐亚琪, 等. 材料导报, 2020, 34(Z2), 37.
20 Serwicka E M. Catalysts, 2021, 11(9), 1087.
21 Portela R, Jansson I, Suárez S, et al. Chemical Engineering Journal, 2017, 310, 560.
22 Lopes J D S, Rodrigues W V, Oliveira V V, et al. Applied Clay Science, 2019, 168, 295.
23 Liu Z, Wang A, Zhang Q, et al. Environmental Progress & Sustainable Energy, 2021, 40(1), e13479.
24 Maarisetty D, Baral S S. Journal of Materials Chemistry A, 2020, 8(36), 18560.
25 Zhao Q, Fu L, Jiang D, et al. Communications Chemistry, 2019, 2(1), 11.
26 Zhao Q, Fu L, Jiang D, et al. Chemical Communications, 2018, 54(59), 8249.
27 Dong X, Sun Z, Zhang X, et al. Journal of the Taiwan Institute of Che-mical Engineers, 2018, 84, 203.
28 Shehu-Imam S, Adnan R, Mohd-Kaus N H. Toxicological & Environmental Chemistry, 2018, 100(5-7), 518.
29 Sarafraz M, Ali S, Sadani M, et al. International Journal of Environmental Analytical Chemistry, DOI:10.1080/03067319.2020.1791330.
30 Shurbaji S, Huong P T, Altahtamouni T M. Catalysts, 2021, 11(4), 437.
31 Li C, Zhu N, Dong X, et al. Advanced Powder Technology, 2020, 31(3), 1241.
32 Li C, Sun Z, Song A, et al. Applied Catalysis B:Environmental, 2018, 236, 76.
33 Li C, Sun Z, Zhang W, et al. Applied Catalysis B:Environmental, 2018, 220, 272.
34 Li C, Dong X, Zhu N, et al. Chemical Engineering Journal, 2020, 396, 125311.
35 Yao B, Li R, Yan S, et al. Environment International, 2018, 118, 1.
36 Bilal M, Iqbal H M N. Science of the Total Environment, 2019, 690, 447.
37 Bayode A A, Vieira E M, Moodley R, et al. Chemical Engineering Journal, 2021, 420, 127668.
38 Li C, Huang Y, Dong X, et al. Applied Catalysis B:Environmental, 2019, 247, 10.
39 Lee J E, Ok Y S, Tsang D C W, et al. Science of the Total Environment, 2020, 719, 137405.
40 Song S, Zhang S, Zhang X, et al. Frontiers in Materials, 2020, 7, 595667.
41 He C, Cheng J, Zhang X, et al. Chemical Reviews, 2019, 119(7), 4471.
42 Zang M, Zhao C, Wang Y, et al. Journal of Saudi Chemical Society, 2019, 23(6), 645.
43 Guo Y, Wen M, Li G, et al. Applied Catalysis B:Environmental, 2021, 281, 119447.
44 Wang C, Chen T H, Liu H B, et al. Materials Reports, 2020, 34(8), 15003 (in Chinese).
王灿, 陈天虎, 刘海波, 等. 材料导报, 2020, 34(15), 15003.
45 Chen L C, Cui W, Chen P, et al. Materials Reports, 2021, 35(21), 21001 (in Chinese).
陈侣存, 崔雯, 陈鹏, 等. 材料导报, 2021, 35(21), 21001.
46 Yang P, Li J, Zuo S. Chemical Engineering Science, 2017, 162, 218.
47 Ye N, Li Y, Yang Z, et al. Applied Catalysis A:General, 2019, 579, 44.
48 Mora L D, Bonfim L F, Barbosa L V, et al. Materials, 2019, 12(23), 3943.
49 Wang C, Zhang P, Wang J, et al. Microporous and Mesoporous Materials, 2021, 315, 110855.
50 Yan Z, Fu L, Zuo X, et al. Applied Catalysis B:Environmental, 2018, 226, 23.
51 Zhang R Y, Wang S Y, Li B X, et al. Materials Reports, 2021, 35(21), 21037 (in Chinese).
张瑞阳, 王姝焱, 黎邦鑫, 等. 材料导报, 2021, 35(21), 21037.
52 Dong X, Ren B, Sun Z, et al. Applied Catalysis B:Environmental, 2019, 253, 206.
53 Zhai S, Zheng Q, Ge M. Journal of Molecular Liquids, 2021, 337, 116611.
54 Fu P, Lin X, Wang L, et al. Applied Clay Science, 2020, 198, 105834.
55 Dutta D K. 9-Clay mineral catalysts, Schoonheydt R, Johnston C T, ed., Elsevier, Netherlands, 2018, pp. 289.
56 Cheng Z, Feng B, Chen Z, et al. Chemical Engineering Journal, 2020, 392, 123747.
57 Zhao B, Cheng Z, Zheng J, et al. Catalysis Letters, 2021, 151(11), 3287.
58 Chen Z, Li J, Cheng Z, et al. Applied Clay Science, 2018, 163, 227.
59 Li J, Zuo S, Yang P, et al. Materials, 2017, 10(8), 949.
60 Feng B, Wei Y, Qiu Y, et al. Journal of Rare Earths, 2018, 36(11), 1169.
61 Qiu Y, Ye N, Situ D, et al. Materials, 2019, 12(5), 728.
62 Cheng Z, Chen Z, Li J, et al. Applied Surface Science, 2018, 459, 32.
63 Vaculíková L, Valoviová V, Plevová E, et al. Applied Clay Science, 2021, 202, 105977.
64 Torres M, De Los Santos C, Portugau P, et al. Applied Clay Science, 2021, 201, 105935.
65 Mohammad G A, Rahemi N, Allahyari S, et al. Topics in Catalysis, 2017, 60(12), 934.
66 Qing Y H, Su X L, Wang Y B, et al. Materials Reports, 2020, 34(19), 19018 (in Chinese).
卿艳红, 苏小丽, 王钺博, 等. 材料导报, 2020, 34(19), 19018.
67 Peng G, Li T, Ai B, et al. Chemical Engineering Journal, 2019, 360, 1119.
68 Peng K, Fu L, Yang H, et al. Nano Research, 2017, 10(2), 570.
69 Marcos F C F, Assaf J M, Assaf E M. Molecular Catalysis, 2018, 458, 297.
70 Chmielarz L, Kowalczyk A, Skoczek M, et al. Applied Clay Science, 2018, 160, 116.
71 Xie W, Wang J, Fu L, et al. Applied Clay Science, 2020, 185, 105374.
72 Guo S, Yang W, You L, et al. Chemical Engineering Journal, 2020, 393, 124758.
73 Wang J, Yao J, Zhu L, et al. Chemosphere, 2022, 289, 133211.
74 Bao T, Damtie M M, Wu K, et al. Applied Clay Science, 2019, 176, 66.
75 Bao T, Jin J, Damtie M M, et al. Journal of Saudi Chemical Society, 2019, 23(7), 864.
76 Yi L, Li Y, Zhu L, et al. Journal of Cleaner Production, 2021, 317, 128441.
77 Sun Z, Liu X, Dong X, et al. Chemosphere, 2021, 263, 127965.
78 Guan K. Preparation of rectorite/sludge composited biochar materials and the performance and mechanisms of their adsorption/catalysis. Ph. D. Thesis, Wuhan University, China, 2020 (in Chinese).
管鲲. 累托石/污泥复合生物炭材料制备及其吸附/催化性能与机理研究. 博士学位论文, 武汉大学, 2020.
79 Sadjadi S. Applied Clay Science, 2020, 189, 105537.
80 Papoulis D. Applied Clay Science, 2019, 168, 164.
81 Wei G, Liu P, Chen D, et al. Applied Clay Science, 2019, 182, 105280.
82 Vinokurov V A, Stavitskaya A V, Glotov A P, et al. The Chemical Record, 2018, 18(7-8), 858.
83 Goswami N, Biswas B, Naidu R, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(22), 18350.
84 Wang J, Zhang Y, Ning W, et al. Journal of the American Ceramic Society, 2021, 104(9), 4867.
85 Huang Z F. Degradation of PPCPs by persulfate activated by CuO/HNTs. Master’s Thesis, Guangdong University of Technology, China, 2020 (in Chinese).
黄卓帆. 埃洛石负载纳米氧化铜活化过硫酸钠对PPCPs的降解机制研究. 硕士学位论文, 广东工业大学, 2020.
86 Wang L. Construction and photocatalytic performance study of holloysite-based semiconductor materials. Master’s Thesis, Inner Mongolia University, China, 2021 (in Chinese).
王乐. 埃洛石基半导体材料的构筑及其光催化性能研究. 硕士学位论文, 内蒙古大学, 2021.
87 Mavrikos A, Pospíšil M, Gianni E, et al. Journal of Molecular Liquids, 2021, 343, 117678.
88 Xu J, Yun X, Li M, et al. RSC Advances, 2021, 11(47), 29537.
89 Li Y, Chen Z, Qi J, et al. Separation and Purification Technology, 2021, 277, 119492.
90 Huang Q, Xu L, Xiao Y, et al. Journal of Rare Earths, DOI:10.1016/j.jre.2021.11.013.
91 Zhao Y. Preparation of attapulgite composite material and its effect on purifying formaldehyde at room temperature. Master’s Thesis, Hefei University of Technology, China, 2021 (in Chinese).
赵亿. 凹凸棒石复合材料制备及其室温下净化甲醛的作用. 硕士学位论文, 合肥工业大学, 2021.
92 Liu P, Wei G, He H, et al. Applied Surface Science, 2019, 464, 287.
93 Liu P, Wei G, Liang X, et al. Applied Clay Science, 2018, 161, 265.
94 Zhai P, Liu H, Sun F, et al. Applied Clay Science, 2022, 216, 106327.
[1] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[2] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[3] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[4] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[5] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[6] 孙志雅, 孟宇航, 杨华明. 黏土矿物基载药体系的研究进展[J]. 材料导报, 2022, 36(2): 20110152-10.
[7] 甘建昌, 胡海平, 苏明, 陈锋, 王辉虎. 金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用[J]. 材料导报, 2022, 36(10): 20100188-10.
[8] 解维闵, 梁晓正, 赵晓光, 杨华明. 黏土矿物基纳米复合阻燃材料的研究进展[J]. 材料导报, 2021, 35(23): 23192-23204.
[9] 张瑞阳, 王姝焱, 黎邦鑫, 张艾丽, 张骞, 周莹. 气相臭氧分解催化材料的研究进展[J]. 材料导报, 2021, 35(21): 21037-21049.
[10] 附青山, 张磊, 张伟, IsmailPirMuhammad, 陈雪丹, 龚敏, 何平, 王祖波. 金属-有机框架材料对废水中污染物的吸附研究进展[J]. 材料导报, 2021, 35(11): 11099-11109.
[11] 代朝猛, 王泽雨, 段艳平, 刘曙光, 涂耀仁, 李彦. 过硫酸盐高级氧化技术在土壤和地下水修复中的研究进展[J]. 材料导报, 2020, 34(Z1): 107-110.
[12] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[13] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[14] 卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
[15] 杨威, 郭盛, 陈金毅. 累托石基复合光催化材料研究进展[J]. 材料导报, 2020, 34(11): 11022-11028.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed