Advances in the Research of Clay Mineral-based Catalytic Materials
SHANG Xi1, ZHAO Qihang2,3,*, YANG Huaming1,2,3
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China 2 Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China 3 Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
Abstract: Nowadays, the excessive pollutants have been a serious problem, which poses a threat to human health and ecological environment. Catalytic technology is considered to be one of the most effective methods to degrade pollutants considering its advantages of rapid reaction and strong oxidation. Natural clay mineral possesses a series of advantages including excellent structure, physicochemical property, aplenty of hydroxyl groups and low cost, which could be applied to support materials of catalyst. In this review, we discuss the interaction between different clay mineral and active component and carry out to develop high-performance catalytic materials for solving environmental problems. In addition, the catalytic mechanism of clay mineral materials is also explained clearly. Based on the summarized problems of clay mineral in catalytic research, our work will be of remarkable theoretical significance and practical values in preparing the clay-based catalytic catalysts in pollutant degradation and environmental remediation.
1 Mishra A, Mehta A, Basu S. Journal of Environmental Chemical Engineering, 2018, 6(5), 6088. 2 Pandey P, Saini V K. Pillared interlayered clays for pollution remediation, Crini G, Lichtfouse E, ed. , Springer International Publishing, Cham, 2018, pp. 353. 3 Chafik T. Materials Today:Proceedings, 2021, 37, 3834. 4 Xu C, Nasrollahzadeh M, Sajjadi M, et al. Renewable and Sustainable Energy Reviews, 2019, 112, 195. 5 Baloyi J, Ntho T, Moma J. RSC Advances, 2018, 8(10), 5197. 6 Chen T, Yuan Y, Zhao Y, et al. Langmuir, 2019, 35(6), 2368. 7 Li J, Hu M, Zuo S, et al. Current Opinion in Chemical Engineering, 2018, 20, 93. 8 Ralphs K, Hardacre C, James S L. Chemical Society Reviews, 2013, 42(18), 7701. 9 Zhang L, Ran J, Qiao S Z, et al. Chemical Society Reviews, 2019, 48(20), 5184. 10 Tong H, Ouyang S, Bi Y, et al. Advanced Materials, 2012, 24(2), 229. 11 Cheng H, Zhou Y, Liu Q. 6-Kaolinite nanomaterials:preparation, properties and functional applications, Wang A, Wang W, ed., Elsevier, Netherlands, 2019, pp. 285. 12 Ma W, Hu J, Yoza B A, et al. Applied Clay Science, 2019, 175, 159. 13 Cao Z, Wang Q, Cheng H. Chinese Chemical Letters, 2021, 32(9), 2617. 14 Zhao B, Liu L, Cheng H. Applied Clay Science, 2021, 208, 106098. 15 Chiam S L, Pung S Y, Yeoh F Y. Environmental Science and Pollution Research, 2020, 27(6), 5759. 16 Kakavandi B, Takdastan A, Pourfadakari S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 329. 17 Tiya-Djowe A, Ruth N, Kamgang-Youbi G, et al. Microporous and Mesoporous Materials, 2018, 255, 148. 18 Mamaghani A H, Haghighat F, Lee C S. Chemosphere, 2019, 219, 804. 19 Gong Y, Wang L L, Xu Y Q, et al. Materials Reports, 2020, 34(Z2), 37 (in Chinese). 巩云, 王龙龙, 徐亚琪, 等. 材料导报, 2020, 34(Z2), 37. 20 Serwicka E M. Catalysts, 2021, 11(9), 1087. 21 Portela R, Jansson I, Suárez S, et al. Chemical Engineering Journal, 2017, 310, 560. 22 Lopes J D S, Rodrigues W V, Oliveira V V, et al. Applied Clay Science, 2019, 168, 295. 23 Liu Z, Wang A, Zhang Q, et al. Environmental Progress & Sustainable Energy, 2021, 40(1), e13479. 24 Maarisetty D, Baral S S. Journal of Materials Chemistry A, 2020, 8(36), 18560. 25 Zhao Q, Fu L, Jiang D, et al. Communications Chemistry, 2019, 2(1), 11. 26 Zhao Q, Fu L, Jiang D, et al. Chemical Communications, 2018, 54(59), 8249. 27 Dong X, Sun Z, Zhang X, et al. Journal of the Taiwan Institute of Che-mical Engineers, 2018, 84, 203. 28 Shehu-Imam S, Adnan R, Mohd-Kaus N H. Toxicological & Environmental Chemistry, 2018, 100(5-7), 518. 29 Sarafraz M, Ali S, Sadani M, et al. International Journal of Environmental Analytical Chemistry, DOI:10.1080/03067319.2020.1791330. 30 Shurbaji S, Huong P T, Altahtamouni T M. Catalysts, 2021, 11(4), 437. 31 Li C, Zhu N, Dong X, et al. Advanced Powder Technology, 2020, 31(3), 1241. 32 Li C, Sun Z, Song A, et al. Applied Catalysis B:Environmental, 2018, 236, 76. 33 Li C, Sun Z, Zhang W, et al. Applied Catalysis B:Environmental, 2018, 220, 272. 34 Li C, Dong X, Zhu N, et al. Chemical Engineering Journal, 2020, 396, 125311. 35 Yao B, Li R, Yan S, et al. Environment International, 2018, 118, 1. 36 Bilal M, Iqbal H M N. Science of the Total Environment, 2019, 690, 447. 37 Bayode A A, Vieira E M, Moodley R, et al. Chemical Engineering Journal, 2021, 420, 127668. 38 Li C, Huang Y, Dong X, et al. Applied Catalysis B:Environmental, 2019, 247, 10. 39 Lee J E, Ok Y S, Tsang D C W, et al. Science of the Total Environment, 2020, 719, 137405. 40 Song S, Zhang S, Zhang X, et al. Frontiers in Materials, 2020, 7, 595667. 41 He C, Cheng J, Zhang X, et al. Chemical Reviews, 2019, 119(7), 4471. 42 Zang M, Zhao C, Wang Y, et al. Journal of Saudi Chemical Society, 2019, 23(6), 645. 43 Guo Y, Wen M, Li G, et al. Applied Catalysis B:Environmental, 2021, 281, 119447. 44 Wang C, Chen T H, Liu H B, et al. Materials Reports, 2020, 34(8), 15003 (in Chinese). 王灿, 陈天虎, 刘海波, 等. 材料导报, 2020, 34(15), 15003. 45 Chen L C, Cui W, Chen P, et al. Materials Reports, 2021, 35(21), 21001 (in Chinese). 陈侣存, 崔雯, 陈鹏, 等. 材料导报, 2021, 35(21), 21001. 46 Yang P, Li J, Zuo S. Chemical Engineering Science, 2017, 162, 218. 47 Ye N, Li Y, Yang Z, et al. Applied Catalysis A:General, 2019, 579, 44. 48 Mora L D, Bonfim L F, Barbosa L V, et al. Materials, 2019, 12(23), 3943. 49 Wang C, Zhang P, Wang J, et al. Microporous and Mesoporous Materials, 2021, 315, 110855. 50 Yan Z, Fu L, Zuo X, et al. Applied Catalysis B:Environmental, 2018, 226, 23. 51 Zhang R Y, Wang S Y, Li B X, et al. Materials Reports, 2021, 35(21), 21037 (in Chinese). 张瑞阳, 王姝焱, 黎邦鑫, 等. 材料导报, 2021, 35(21), 21037. 52 Dong X, Ren B, Sun Z, et al. Applied Catalysis B:Environmental, 2019, 253, 206. 53 Zhai S, Zheng Q, Ge M. Journal of Molecular Liquids, 2021, 337, 116611. 54 Fu P, Lin X, Wang L, et al. Applied Clay Science, 2020, 198, 105834. 55 Dutta D K. 9-Clay mineral catalysts, Schoonheydt R, Johnston C T, ed., Elsevier, Netherlands, 2018, pp. 289. 56 Cheng Z, Feng B, Chen Z, et al. Chemical Engineering Journal, 2020, 392, 123747. 57 Zhao B, Cheng Z, Zheng J, et al. Catalysis Letters, 2021, 151(11), 3287. 58 Chen Z, Li J, Cheng Z, et al. Applied Clay Science, 2018, 163, 227. 59 Li J, Zuo S, Yang P, et al. Materials, 2017, 10(8), 949. 60 Feng B, Wei Y, Qiu Y, et al. Journal of Rare Earths, 2018, 36(11), 1169. 61 Qiu Y, Ye N, Situ D, et al. Materials, 2019, 12(5), 728. 62 Cheng Z, Chen Z, Li J, et al. Applied Surface Science, 2018, 459, 32. 63 Vaculíková L, Valoviová V, Plevová E, et al. Applied Clay Science, 2021, 202, 105977. 64 Torres M, De Los Santos C, Portugau P, et al. Applied Clay Science, 2021, 201, 105935. 65 Mohammad G A, Rahemi N, Allahyari S, et al. Topics in Catalysis, 2017, 60(12), 934. 66 Qing Y H, Su X L, Wang Y B, et al. Materials Reports, 2020, 34(19), 19018 (in Chinese). 卿艳红, 苏小丽, 王钺博, 等. 材料导报, 2020, 34(19), 19018. 67 Peng G, Li T, Ai B, et al. Chemical Engineering Journal, 2019, 360, 1119. 68 Peng K, Fu L, Yang H, et al. Nano Research, 2017, 10(2), 570. 69 Marcos F C F, Assaf J M, Assaf E M. Molecular Catalysis, 2018, 458, 297. 70 Chmielarz L, Kowalczyk A, Skoczek M, et al. Applied Clay Science, 2018, 160, 116. 71 Xie W, Wang J, Fu L, et al. Applied Clay Science, 2020, 185, 105374. 72 Guo S, Yang W, You L, et al. Chemical Engineering Journal, 2020, 393, 124758. 73 Wang J, Yao J, Zhu L, et al. Chemosphere, 2022, 289, 133211. 74 Bao T, Damtie M M, Wu K, et al. Applied Clay Science, 2019, 176, 66. 75 Bao T, Jin J, Damtie M M, et al. Journal of Saudi Chemical Society, 2019, 23(7), 864. 76 Yi L, Li Y, Zhu L, et al. Journal of Cleaner Production, 2021, 317, 128441. 77 Sun Z, Liu X, Dong X, et al. Chemosphere, 2021, 263, 127965. 78 Guan K. Preparation of rectorite/sludge composited biochar materials and the performance and mechanisms of their adsorption/catalysis. Ph. D. Thesis, Wuhan University, China, 2020 (in Chinese). 管鲲. 累托石/污泥复合生物炭材料制备及其吸附/催化性能与机理研究. 博士学位论文, 武汉大学, 2020. 79 Sadjadi S. Applied Clay Science, 2020, 189, 105537. 80 Papoulis D. Applied Clay Science, 2019, 168, 164. 81 Wei G, Liu P, Chen D, et al. Applied Clay Science, 2019, 182, 105280. 82 Vinokurov V A, Stavitskaya A V, Glotov A P, et al. The Chemical Record, 2018, 18(7-8), 858. 83 Goswami N, Biswas B, Naidu R, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(22), 18350. 84 Wang J, Zhang Y, Ning W, et al. Journal of the American Ceramic Society, 2021, 104(9), 4867. 85 Huang Z F. Degradation of PPCPs by persulfate activated by CuO/HNTs. Master’s Thesis, Guangdong University of Technology, China, 2020 (in Chinese). 黄卓帆. 埃洛石负载纳米氧化铜活化过硫酸钠对PPCPs的降解机制研究. 硕士学位论文, 广东工业大学, 2020. 86 Wang L. Construction and photocatalytic performance study of holloysite-based semiconductor materials. Master’s Thesis, Inner Mongolia University, China, 2021 (in Chinese). 王乐. 埃洛石基半导体材料的构筑及其光催化性能研究. 硕士学位论文, 内蒙古大学, 2021. 87 Mavrikos A, Pospíšil M, Gianni E, et al. Journal of Molecular Liquids, 2021, 343, 117678. 88 Xu J, Yun X, Li M, et al. RSC Advances, 2021, 11(47), 29537. 89 Li Y, Chen Z, Qi J, et al. Separation and Purification Technology, 2021, 277, 119492. 90 Huang Q, Xu L, Xiao Y, et al. Journal of Rare Earths, DOI:10.1016/j.jre.2021.11.013. 91 Zhao Y. Preparation of attapulgite composite material and its effect on purifying formaldehyde at room temperature. Master’s Thesis, Hefei University of Technology, China, 2021 (in Chinese). 赵亿. 凹凸棒石复合材料制备及其室温下净化甲醛的作用. 硕士学位论文, 合肥工业大学, 2021. 92 Liu P, Wei G, He H, et al. Applied Surface Science, 2019, 464, 287. 93 Liu P, Wei G, Liang X, et al. Applied Clay Science, 2018, 161, 265. 94 Zhai P, Liu H, Sun F, et al. Applied Clay Science, 2022, 216, 106327.