Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21037-21049    https://doi.org/10.11896/cldb.21060087
  环境催化材料 |
气相臭氧分解催化材料的研究进展
张瑞阳1,2, 王姝焱2, 黎邦鑫2, 张艾丽2, 张骞2, 周莹1,2
1 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2 西南石油大学新能源与材料学院,成都 610500
Research Progress of Gaseous Ozone Decomposition Catalysts
ZHANG Ruiyang1,2, WANG Shuyan2, LI Bangxin2, ZHANG Aili2, ZHANG Qian2, ZHOU Ying1,2
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 7257KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业化的快速发展,以臭氧为氧化剂的高级氧化技术被广泛应用于水污染处理、空气净化以及杀菌消毒领域。然而,过量未反应的臭氧被排放到空气中,造成严重的空气污染问题,威胁人类生命健康。相比于传统的吸附、热分解、药液吸收等臭氧治理技术,催化臭氧分解技术通过催化材料加速臭氧的分解过程,因其安全高效、绿色环保的优势而备受关注。随着研究的不断深入,臭氧分解催化材料的种类更加丰富,包括非金属碳材料、贵金属、过渡金属氧化物、金属-有机框架材料等,其应用形式也从粉末型催化材料发展到整体式催化材料。
然而,在实际应用中,臭氧分解催化材料面临着活性和抗湿性两个主要问题:前期研究表明,过氧物种在催化材料表面活性位点的脱附是反应的速控步;而过氧物种会覆盖臭氧分解催化剂活性位点,导致催化活性降低;除此之外,臭氧往往伴随着大量的水汽,其与臭氧在活性位点的竞争吸附,会导致催化剂活性位点的失活。因此,急需开发高催化活性和高耐湿性的臭氧分解催化材料。
对于活性来说,通过提高比表面积、构建氧空位、晶面调控、掺杂和表面修饰等手段可以提高催化材料表面的活性位点数量,促进催化反应过程得失电子循环以增强催化材料的活性。对于抗湿性来说,疏水性处理是提高催化材料抗湿性的有效措施。近几年来,研究学者发现,一些独特的活性位点可以把水当作助催化剂,这一方面提高了催化活性,另一方面避免了水的竞争吸附导致催化材料稳定性的下降。
本文归纳了气相臭氧分解催化材料的研究进展,介绍了气相臭氧分解的过程和机理,系统梳理了不同类型催化材料在催化臭氧分解过程中的优势和存在的问题,并在此基础上着重介绍了臭氧分解催化材料活性提升和稳定性提高的策略;以期为制备高效稳定的新型臭氧分解催化材料、推动臭氧氧化技术在化工领域得到更大规模的推广和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张瑞阳
王姝焱
黎邦鑫
张艾丽
张骞
周莹
关键词:  环境污染  臭氧分解  催化材料  活性  稳定性    
Abstract: Advanced oxidation technology involving strong oxidizing ozone has been applied in the fields of water treatment, air purification and sterilization. But the excessive discharge of ozone causes substantial air pollution and represents a major hazard to human health. Compared to typical ozone treatment procedures, such as adsorption, thermal decomposition, absorption and so on, catalytic ozone decomposition has garnered a lot of attention since it is very efficient, safe and environmentally benign. Up to now, great progress has been made on catalysts for ozone decomposition. The types of catalysts have become more abundant, including activated carbon, noble metals, transition metal oxides, metal-organic framework materials, etc., and their application forms have evolved from powder-based materials to monolithic materials.
Nevertheless, two major difficulties severely limit the practical application of catalysts: on the one hand, catalyst deactivation is unavoidable due to the accumulation of intermediate oxygen species at surface active sites, which is the rate-limiting phase of the reaction. On the other hand, due to the intense competing adsorption between water molecules and ozone at active sites, catalysts are rapidly poisoned in moist conditions. As a result, catalysts with high catalytic activity and water resistance are highly desirable.
To enhance the catalytic property, some effective strategies, including enlarging the surface area, fabricating oxygen vacancy, regulating lattice plane, doping and surface modification, are used to increase the concentration of active sites and accelerate the electron transfer. While hydrophobic treatment is a common approach to improve water resistance. Furthermore, researchers have shown in recent years that water can ope-rate as a promoter at some specific active sites, which not only boosts catalytic activity but also prevents unstable performance caused by water adsorption competition.
This overview covers the research progress of catalytic ozone decomposition materials, as well as the gas ozone decomposition reaction process and mechanism. Especially, the advantages and challenges of various catalysts are summarized and the strategies for improving the activity and stability are highlighted. This review serves as a good reference for the preparation of stable and efficient catalytic ozone decomposition materials and the large-scale application of ozone oxidation technology in the chemical industry.
Key words:  environmental pollution    ozone decomposition    catalyst    activity    stability
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TB34  
基金资助: 国家自然科学基金(U1862111);四川省科技计划(2020ZDZX0008)
通讯作者:  yzhou@swpu.edu.cn;ryzhang@swpu.edu.cn   
作者简介:  张瑞阳,2012年毕业于河南理工大学,获得工学学士学位;2020年毕业于西南石油大学,获得博士学位,目前是西南石油大学讲师。主要研究领域为环境功能材料的开发与应用。
周莹,2004年在中南大学获得无机非金属材料学士学位,2007年于中国科学院上海光学精密机械研究所获得材料学硕士学位,2010年在瑞士苏黎世大学(UZH)获得材料化学博士学位。长期从事油气资源清洁利用与污染治理材料研究,入选国家百千万人才工程人选、“长江学者奖励计划”青年学者、德国洪堡学者、日本JSPS邀请学者、四川省学术与技术带头人、四川省有突出贡献的优秀专家等,受聘为日本京都大学讲座教授等。在科学通报、中国科学化学、Nat. Commun., Angew. Chem. Int. Ed., ACS Catal.等期刊发表论文130余篇,被正面引用6000多次,H index 为45,15篇论文入选ESI高被引论文,授权中国发明专利12项、美国发明专利1项。获得中国石油和化学工业联合会青年科技突出贡献奖、侯德榜化工科学技术青年奖、四川省青年科技奖等。担任国家能源新材料技术研发中心理事、四川省金属学会理事、四川省科技青年联合会常务理事等,《材料导报》《天然气化工》《中国化学快报》《Recent Innovations in Chemical Engineering》《Frontiers in Environmental Chemistry》等期刊编委,《物理化学学报》青年编委。
引用本文:    
张瑞阳, 王姝焱, 黎邦鑫, 张艾丽, 张骞, 周莹. 气相臭氧分解催化材料的研究进展[J]. 材料导报, 2021, 35(21): 21037-21049.
ZHANG Ruiyang, WANG Shuyan, LI Bangxin, ZHANG Aili, ZHANG Qian, ZHOU Ying. Research Progress of Gaseous Ozone Decomposition Catalysts. Materials Reports, 2021, 35(21): 21037-21049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060087  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21037
1 Brunekreef B, Holgate S T. Lancet, 2002, 360 (9341), 1233.
2 Akimoto H. Science, 2003, 302 (5651), 1716.
3 Schwarzenbach R P, Egli T, Hofstetter T B, et al. Annual Review of Environment and Resources, 2010, 35, 109.
4 Geng F, Tie X, Xu J, et al. Atmospheric Environment, 2008, 42 (29), 6873.
5 Sillman S. Atmospheric Environment, 1999, 33 (12), 1821.
6 Oyama S T. Catalysis Reviews, 2000, 42 (3), 279.
7 Snyder S A, Wert E C, Rexing D J, et al. Ozone: Science & Enginee-ring, 2006, 28 (6), 445.
8 Van Geluwe S, Braeken L, Van der Bruggen B. Water Research, 2011, 45 (12), 3551.
9 Destaillats H, Chen W, Apte M G, et al. Atmospheric Environment, 2011, 45 (21), 3561.
10 Wang T, Xue L, Brimblecombe P, et al. Science of the Total Environment, 2017, 575, 1582.
11 Takeuchi Y, Itoh T. Separations Technology, 1993, 3(3), 168.
12 Jones W M, Davidson N. Journal of the American Chemical Society, 1962, 84 (15), 2868.
13 Harteck P, Dondes S, Thompson B. Science, 1965, 147 (3656), 393.
14 Liu Y, Yang W, Zhang P, et al. Applied Surface Science, 2018, 442, 640.
15 Gong S, Xie Z, Li W, et al. Applied Catalysis B: Environmental, 2019, 241, 578.
16 Ohtani B, Zhang S W, Nishimoto S, et al. Journal of the Chemical Society, Faraday Transactions, 1992, 88 (7), 1049.
17 Cho K C, Hwang K C, Sano T, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161(2-3), 155.
18 Jia J, Zhang P, Chen L. Applied Catalysis B: Environmental, 2016, 189, 210.
19 Dhandapani B, Oyama S T. Applied Catalysis A: General, 1997, 11 (2), 129.
20 Beltrán F J, Rivas J, Álvarez P, et al. Ozone: Science & Engineering, 2002, 24 (4), 227.
21 Zhu G, Zhu W, Lou Y, et al. Nature Communications, 2021, 12, 4152.
22 Lin J, Kawai A, Nakajima T. Applied Catalysis B: Environmental, 2002, 39 (2), 157.
23 Wang H, Rassu P, Wang X, et al. Angewandte Chemie International Edition, 2018, 57 (50), 16416.
24 Jia J, Zhang P. Ozone: Science & Engineering, 2018, 40 (1), 21.
25 Sullivan R, Thornberry T, Abbatt J. Atmospheric Chemistry and Physics, 2004, 4 (5), 1301.
26 Batakliev T, Georgiev V, Anachkov M, et al. Interdisciplinary Toxicology, 2014, 7 (2), 47.
27 Tomiyasu H, Fukutomi H, Gordon G. Inorganic Chemistry, 1985, 24 (19), 2962.
28 Alder M G, Hill G R. Journal of the American Chemical Society, 1950, 72 (5), 1884.
29 Bulanin K, Lavalley J, Tsyganenko A. The Journal of Physical Chemistry, 1995, 99 (25), 10294.
30 Bulanin K, Alexeev A, Bystrov D, et al. The Journal of Physical Chemistry, 1994, 98 (19), 5100.
31 Li W, Gibbs G, Oyama S T. Journal of the American Chemical Society, 1998, 120 (35), 9041.
32 Li W, Oyama S T. Journal of the American Chemical Society, 1998, 120 (35), 9047.
33 Radhakrishnan R, Oyama S T. Journal of Catalysis, 2001, 199 (2), 282.
34 Shafeeyan M S, Daud W M A W, Houshmand A, et al. Journal of Analytical and Applied Pyrolysis, 2010, 89 (2), 143.
35 Dαbrowski A, Podkościelny P, Hubicki Z, et al. Chemosphere, 2005, 58 (8), 1049.
36 Subrahmanyam C, Bulushev D A, Kiwi-Minsker L. Applied Catalysis B: Environmental, 2005, 61(1-2), 98.
37 Jüntgen H. Fuel, 1986, 65(10), 1436.
38 Yang Y, Chiang K, Burke N. Catalysis Today, 2011, 178 (1), 197.
39 Yu Y, Ji J, Li K, et al. Catalysis Today, 2020, 355 (15), 573.
40 Gélin P, Primet M. Applied Catalysis B: Environmental, 2002, 39 (1), 1.
41 Pakhare D, Spivey J. Chemical Society Reviews, 2014, 43 (22), 7813.
42 Manchot W, Kampschulte W. Berichte der Deutschen Chemischen Gesellschaft, 1907, 40 (4), 4984.
43 Chang C L, Lin T S. Reaction Kinetics and Catalysis Letters, 2005, 86 (1), 91.
44 Nikolov P, Genov K, Konova P, et al. Journal of Hazardous Materials, 2010, 184 (1-3), 16.
45 Hao Z, Cheng D, Guo Y, et al. Applied Catalysis B: Environmental, 2001, 33 (3), 217.
46 Kameya T, Urano K. Journal of Environmental Engineering, 2002, 128 (3), 286.
47 Shao X, Li X, Ma J, et al. ACS Omega, 2021, 6 (16), 10715.
48 Yang L, Ma J, Li X, et al. Catalysis Science & Technology, 2020, 10 (22), 7671.
49 Li B X, Zhang Q, Xiao J, et al. Journal of Inorganic Materials, 2021, DOI: 10.15541/jim20210127 (in Chinese).
黎邦鑫,张骞,肖杰,等. 无机材料学报,2021,DOI: 10.15541/jim20210127.
50 Schwab G, Hartman C. The Journal of Physical Chemistry, 1964, 6, 72.
51 Cao R, Zhang P, Liu Y, et al. Applied Surface Science, 2019, 495, 143607.
52 Gopi T, Swetha G, Shekar S C, et al. Catalysis Communications, 2017, 92, 51.
53 Chen X, Zhao Z, Liu S, et al. Journal of Rare Earths, 2020, 38 (2), 175.
54 Tanaka H, Misono M. Current Opinion in Solid State & Materials Science, 2001, 5 (5), 381.
55 Polo-Garzon F, Wu Z. Journal of Materials Chemistry A, 2018, 6 (7), 2877.
56 Khan N A, Hasan Z, Jhung S H. Journal of Hazardous Materials, 2013, 244, 444.
57 Rangnekar N, Mittal N, Elyassi B, et al. Chemical Society Reviews, 2015, 44 (20), 7128.
58 Liu Y C, Zhu M, Chen M Y, et al. Materials Reports, 2020,34(7), 7003 (in Chinese).
刘宇程, 祝梦, 陈明燕, 等. 材料导报, 2020, 34 (7), 7003.
59 Sun Z B, Si Y N, Zhao S N, et al. Journal of the American Chemical Society, 2021, 143 (13), 5150.
60 Wang Q, O'Hare D. Chemical Reviews, 2012, 112 (7), 4124.
61 Hu L, Zeng X, Wei X, et al. Applied Catalysis B: Environmental, 2020, 273, 119014.
62 Wang Z, Liu W, Hu Y, et al. Applied Catalysis B: Environmental, 2020, 272, 118959.
63 Wang S, Zhu Y, Zhang Y, et al. Nanoscale, 2020, 12 (24), 12817.
64 Ma J, Chen Y, He G, et al. Applied Catalysis B: Environmental, 2021, 285, 119806.
65 Zhang R Y, Li C J, Zhang A L, et al. Materials Reports, 2020, 34 (3), 3001 (in Chinese).
张瑞阳,李成金,张艾丽,等. 材料导报, 2020, 34 (3), 3001.
66 Zhang R, Ma M, Zhang Q, et al. Applied Catalysis B: Environmental, 2018, 235, 17.
67 Lejeune A, Cabrol A, Lebullenger R, et al. ACS Sustainable Chemistry & Engineering, 2020, 8 (7), 2854.
68 Gong S, Wang A, Wang Y, et al. ACS Applied Nano Materials, 2020, 3 (1), 597.
69 Rahimi M G, Wang A, Ma G, et al. RSC Advances, 2020, 10 (67), 40916.
70 Cao R, Li L, Zhang P. Journal of Hazardous Materials, 2021, 407, 124793.
71 Wang C, Ma J, Liu F, et al. The Journal of Physical Chemistry C, 2015, 119 (40), 23119.
72 Wang M X, Zhang P Y, Li J G, et al. Chinese Journal of Catalysis, 2014, 35 (3), 335 (in Chinese).
王鸣晓, 张彭义, 李金格, 等.催化学报, 2014, 35 (3), 335.
73 Oyama S, Zhang W, Heisig C. Applied Catalysis B: Environmental, 1997, 14 (1), 117.
74 Azhariyah A, Pradyasti A, Dianty A, et al. In: IOP Conference Series: Materials Science and Engineering, Banda Aceh, Indonesia,2018, pp. 012075 .
75 Imamura S, Ikebata M, Ito T, et al. Industrial & Engineering Chemistry Research, 1991, 30 (1), 217.
76 Yu Q, Pan H, Zhao M, et al. Journal of Hazardous Materials, 2009, 172 (2-3), 631.
77 Li X, Ma J, Zhang C, et al. Journal of Environmental Sciences, 2019, 80, 159.
78 Yang Y, Zhang P, Jia J. Applied Surface Science, 2019, 484, 45.
79 Ma J, Wang C, He H. Applied Catalysis B: Environmental, 2017, 201, 503.
80 Yang Y, Jia J, Liu Y, et al. Applied Catalysis A: General, 2018, 562, 132.
81 Jia J, Yang W, Zhang P, et al. Applied Catalysis A: General, 2017, 546, 79.
82 Gong S, Li W, Xie Z, et al. New Journal of Chemistry, 2017, 41 (12), 4828.
83 Gong S, Wu X, Zhang J, et al. CrystEngComm, 2018, 20 (22), 3096.
84 Zhu G, Zhu J, Li W, et al. Environmental Science & Technology, 2018, 52 (15), 8684.
85 Gong S, Chen J, Wu X, et al. Catalysis Communications, 2018, 106, 25.
86 Rao Y, Zeng D, Cao X, et al. Ceramics International, 2019, 45 (6), 6966.
87 Liu Y, Zhang P. Applied Catalysis A: General, 2017, 530, 102.
88 Liu Y, Zhang P. The Journal of Physical Chemistry C, 2017, 121 (42), 23488.
89 Lian Z, Ma J, He H. Catalysis Communications, 2015, 59, 156.
90 Sun S, Li H, Xu Z J. Joule, 2018, 2 (6), 1024.
91 Leofanti G, Padovan M, Tozzola G, et al. Catalysis Today, 1998, 41 (1-3), 207.
92 Liu S, Ji J, Yu Y, et al. Catalysis Science & Technology, 2018, 8 (16), 4264.
93 Ding Z, Kloprogge J T, Frost R L, et al. Journal of Porous Materials, 2001, 8 (4), 273.
94 Noack M, Kölsch P, Schäfer R, et al. Chemical Engineering & Technology, 2002, 25 (3), 221.
95 Yang L, Ma J, Li X, et al. Industrial & Engineering Chemistry Research, 2019, 59 (1), 118.
96 Brodu N, Manero M H, Andriantsiferana C, et al. The Canadian Journal of Chemical Engineering, 2018, 96 (9), 1911.
97 Jia J, Zhang P, Chen L. Catalysis Science & Technology, 2016, 6 (15), 5841.
98 Pan X, Yang M Q, Fu X, et al. Nanoscale, 2013, 5 (9), 3601.
99 Zhu G, Zhu J, Jiang W, et al. Applied Catalysis B: Environmental, 2017, 209, 729.
100 Ding Y, Zhang X, Chen L, et al. Journal of Solid State Chemistry, 2017, 250, 121.
101 Li X, Ma J, Yang L, et al. Environmental Science & Technology, 2018, 52 (21), 12685.
102 Zhang L, Wang S, Ni C, et al. Chemical Engineering Science, 2021, 229, 116011.
103 Zhang L, Wang S, Lv L, et al. Langmuir, 2021, 37 (4), 1410.
104 Wang A, Zhang L, Rahimi M G, et al. Applied Catalysis B: Environmental, 2020, 277, 119223.
105 Liu X, Liu J, Chang Z, et al. Catalysis Communications, 2011, 12 (6), 530.
106 Wang N, Qian W, Chu W, et al. Catalysis Science & Technology, 2016, 6 (10), 3594.
107 Chen Y, Qu W, Li C, et al. Industrial & Engineering Chemistry Research, 2018, 57 (37), 12590.
108 Shi M, Li G, Li J, et al. Angewandte Chemie International Edition, 2020, 59 (16), 6590.
109 Li X, Luo L, Bi Y, et al. Nanoscale Research Letters, 2019, 14 (1), 374.
110 Brodu N, Manero M H, Andriantsiferana C, et al. Chemical Engineering Journal, 2013, 231, 281.
111 Ji J, Fang Y, He L, et al. Catalysis Science & Technology, 2019, 9 (15), 4036.
112 Naydenov A, Konova P, Nikolov P, et al. Catalysis Today, 2008, 137 (2-4), 471.
113 Fang C, Li D, Wang X, et al. New Journal of Chemistry, 2021, 45, 10402.
114 Li X, Ma J, Zhang C, et al. Journal of Environmental Sciences, 2020, 91, 43.
115 Li X, Ma J, He H. Environmental Science & Technology, 2020, 54 (18), 11566.
116 Cao R, Li L, Zhang P, et al. Environmental Science: Nano, 2021, 8 (6), 1628.
117 Fang C, Hu C, Li D, et al. New Journal of Chemistry, 2020, 44 (41), 17993.
118 Li D, Cen B, Fang C, et al. New Journal of Chemistry, 2021, 45 (2), 561.
[1] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[2] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[3] 代朝猛, 李彦, 段艳平, 刘曙光, 涂耀仁. 开关表面活性剂调控及增溶机理研究进展[J]. 材料导报, 2021, 35(9): 9218-9222.
[4] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[5] 张鹤, 张会丰, 郑婷婷, 赵富春, 廖双泉. 月桂酸铵对浓缩天然胶乳贮存稳定性及硫化胶性能的影响[J]. 材料导报, 2021, 35(8): 8184-8190.
[6] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[7] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[8] 李秀英, 肖卓豪, 陶歆月, 汪永清, 杨柯, 石纪军, 邓波. 高水平放射性废物固化用磷酸盐玻璃的研究进展[J]. 材料导报, 2021, 35(5): 5032-5039.
[9] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[10] 曹诗瑶, 闫小琴. GaAs材料在光电化学电池中的稳定性[J]. 材料导报, 2021, 35(5): 5062-5066.
[11] 彭黎波, 叶诚曦, 童庆松, 翁景峥. 改性PVDF或替代PVDF粘结剂在锂电池中的应用研究进展[J]. 材料导报, 2021, 35(5): 5174-5180.
[12] 李诗杰, 韩奎华. 利用少量氧化镍负载提高活性炭比电容[J]. 材料导报, 2021, 35(4): 4012-4016.
[13] 陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
[14] 金宇, 冯伟鹏, 董志君, ManuelMonasterio, 李明雨. 辅助胶凝材料玻璃体结构与胶凝活性的研究进展[J]. 材料导报, 2021, 35(3): 3016-3020.
[15] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed