Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3016-3020    https://doi.org/10.11896/cldb.19100052
  材料与可持续发展( 四) ———材料再制造与废弃物料资源化利用 |
辅助胶凝材料玻璃体结构与胶凝活性的研究进展
金宇1,2, 冯伟鹏2, 董志君2, Manuel Monasterio2, 李明雨1
1 哈尔滨工业大学(深圳)材料科学与工程学院,深圳 518055;
2 深圳信息职业技术学院滨海土木工程技术所,深圳 518172
Research Progress on the Glass Structure of Supplementary Cementitious Materials with Relation to Their Hydraulic Reactivity
JIN Yu1,2, FENG Weipeng2, DONG Zhijun2, Manuel Monasterio2, LI Mingyu1
1 School of Material Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
2 Institute of Technology for Marine Civil Engineering, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
下载:  全 文 ( PDF ) ( 3622KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 大宗工业副产品或废弃物(如粒化高炉矿渣、粉煤灰等)作为辅助胶凝材料用于硅酸盐水泥及混凝土中已有不短的时间。利用辅助胶凝材料可有效缓解水泥生产所带来的制备能耗高、自然资源消耗大、二氧化碳排放等问题。
在胶凝材料性能不大幅降低的前提下,要实现大比例取代(≥30%(质量分数))硅酸盐水泥,激发辅助胶凝材料的活性是关键。然而,从材料学观点出发,过往基于宏观性能的经验测试方法,对辅助胶凝材料活性的理解仍相当碎片化。除比表面积等物理性质外,多数辅助胶凝材料的水硬活性取决于其中玻璃相的溶解-沉淀反应。
辅助胶凝材料中的玻璃体结构可简化为网络调整体(如Ca、Na等)和网络形成体(如Si、Al等)的物质的量比,如解聚度。近来对CaO-SiO2-Al2O3体系玻璃体的研究,进一步增强了对玻璃体聚合度的理解。玻璃体的溶解与聚合程度及溶液组成(如溶液的饱和程度、阴阳离子类型及浓度、pH等)密切相关。同时,沉淀的生成也会显著改变玻璃体的溶解动力学。
本文归纳了辅助胶凝材料玻璃体结构与水硬活性的研究进展,分别对表征辅助胶凝材料玻璃体结构的解聚度及玻璃体中Si(Qn(mAl))聚合程度进行了介绍,分析了玻璃体结构在不同激发条件下的反应活性,以期为制备性能稳定和耐久性优良的低碳建筑材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金宇
冯伟鹏
董志君
ManuelMonasterio
李明雨
关键词:  辅助胶凝材料  玻璃体  反应活性  激发    
Abstract: Industrial by-products or solid waste, such as blast furnace slag, coal-combustion fly ash et al., have long been used as supplementary cementitious materials (SCM) in Portland cement and concrete. Utilization of SCM can mitigate the problems caused by cement production, including high energy and natural resources consumption, massive carbon dioxide emission.
To reach the desired high replacement levels (beyond 30wt%) of Portland cement without significant performance loss, triggering SCM reactivity is the key. However, from the point of view of material science, the empirical testing approach concerning macroscopic properties led to a quite fragmented understanding of SCM reactivity. In addition to their specific surface area, the hydraulic reactivity of SCM is highly dependent on the dissolution-precipitation reaction of the glass phase within the minerals.
The glass structure of SCM can be simply expressed as the molar ratio between network modifer (e.g. Ca, Na) and network former (e.g. Si, Al), such as depolymerization degree in glass chemistry. Recent studies on CaO-SiO2-Al2O3 glass enhance the understanding of the structure in terms of Si(Qn(mAl)) polymerization units. The polymerization degree of the glass, saturation index in the solution, cation/anion species and their concentration and pH determine the dissolution rate of the glass structure. Besides, formation of precipitates changes the dissolution kinetics as well.
This review offers a retrospection of the research efforts on the glass structure of SCM in relation to the hydraulic reactivity. The glass structures in terms of depolymerization degree and Si(Qn(mAl)) are presented, respectively. The reactivity of the glass structure under different activation conditions is also elaborated. Therefore, it lays a foundation for the development of the building materials with low-carbon footprint, while stable quality and good durability of the building materials are maintained.
Key words:  supplementary cementitious materials    glass structure    reactivity    activation
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TU526  
基金资助: 国家自然科学基金委青年基金项目(51708363)
作者简介:  金宇,助理研究员。2007年6月本硕连读毕业于武汉理工大学,获得工学硕士学位。2016年1月在德国柏林工业大学获得工学博士学位,目前在哈尔滨工业大学深圳研究生院进行博士后研究工作。主要研究领域为碱激发材料。
引用本文:    
金宇, 冯伟鹏, 董志君, ManuelMonasterio, 李明雨. 辅助胶凝材料玻璃体结构与胶凝活性的研究进展[J]. 材料导报, 2021, 35(3): 3016-3020.
JIN Yu, FENG Weipeng, DONG Zhijun, Manuel Monasterio, LI Mingyu. Research Progress on the Glass Structure of Supplementary Cementitious Materials with Relation to Their Hydraulic Reactivity. Materials Reports, 2021, 35(3): 3016-3020.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100052  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3016
1 Belie N de, Soutsos M, Gruyaert E. Properties of fresh and hardened concrete containing supplementary cementitious materials, Springer, Germany,2018.2 Juenger M C G, Snellings R, Bernal S A.Cement and Concrete Research,2019,122,257.3 Li X, Snellings R, Antoni M, et al.Materials and Structures,2018,51,151.4 Snellings R.RILEM Technical Letters,2016,1,50.5 Avet F, Snellings R, Diaz A A, et al.Cement and Concrete Research,2016,85,1.6 Snellings R, Scrivener K L.Materials and Structures,2016,49(8),3265.7 Skibsted J, Snellings R.Cement and Concrete Research,2019,124,105799.8 Fernandez R, Martirena F, Scrivener K L.Cement and Concrete Research,2011,41(1),113.9 Garg N, Skibsted J.Journal of the American Ceramic Society,2019,291(12),2400.10 Hellmann R, Cotte S, Cadel E, et al.Nature Materials,2015,14(3),307.11 Shimoda K, Tobu Y, Kanehashi K, et al.Journal of Non-Crystalline So-lids,2008,354(10-11),1036.12 Qin Y, Liu H, Yang Y.Metallurgical Research & Technology,2018,115(1),113.13 Liu Y, Lv X, Li B, et al.Ironmaking & Steelmaking,2018,45(6),492.14 Zhang S, Zhang X, Peng H.ISIJ International,2014,54(4),734.15 Liang D, Yan Z, Lv X,et al.Metallurgical and Materials Transactions B,2017,48(1),573.16 Murdoch J B, Stebbins J F, Carmichael I S E.American Mineralogist,1985,70(3-4),332.17 Lee S K, Stebbins J F.American Mineralogist,1999,84(5-6),937.18 Neuville D R, Cormier L, Montouillout V.Journal of Non-Crystalline So-lids,2007,353(2),180.19 Duxson P, Provis J L.Journal of the American Ceramic Society,2008,91(12),3864.20 Oey T, Timmons J, Stutzman P, et al.Journal of the American Ceramic Society,2017,100(10),4785.21 Moesgaard Mette, Keding Ralf, Skibsted J, et al.Chemistry of Materials,2010,22(15),4471.22 Thomsen R M, Skibsted J, Yue Y.The Journal of Physical Chemistry B,2018,122(12),3184.23 Kanehashi K.Solid State Nuclear Magnetic Resonance,2017,84,158.24 Kucharczyk S, Sitarz M, Zajac M, et al.Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy,2018,194,163.25 Kucharczyk S, Zajac M, Stabler C, et al.Cement and Concrete Research,2019,120,77.26 Snellings R.Journal of the American Ceramic Society,2013,96(8),2467.27 Snellings R.Journal of the American Ceramic Society,2015,98(1),303.28 Schöler A, Winnefeld F, Ben Haha M, et al.Journal of the American Ceramic Society,2017,100(6),2553.29 Durdziński P T, Snellings R, Dunant C F, et al.Cement and Concrete Research,2015,78,263.30 Xu B, Pu X C.Journal of the Chinese Ceramic Society,1997,25(6),729(in Chinese).徐彬,蒲心诚.硅酸盐学报,1997,25(6),729.31 Li Y, Sun H, Liu X, et al.Science in China Series E: Technological Sciences,2009,52(9),2695.32 Kinnunen P, Sreenivasan H, Cheeseman C R.Journal of Cleaner Production,2019,3(10),126.33 Durdziński P T, Dunant C F, Ben Haha M, et al.Cement and Concrete Research,2015,73,111.34 Newlands K C, Foss M, Matchei T, et al.Journal of the American Cera-mic Society,2017,100(5),1941.35 Walkley B, San Nicolas R, Sani M A, et al.Cement and Concrete Research,2017,99,155.36 Schott J, Pokrovsky O S, Oelkers E H.Reviews in Mineralogy and Geochemistry,2009,70(1),207.37 Chave T, Frugier P, Gin S, et al.Geochimica et Cosmochimica,2011,75(15),4125.38 Newlands K C, Macphee D E.Advances in Applied Ceramics,2017,116(4),216.39 Riding K, Silva D A, Scrivener K.Cement and Concrete Research,2010,40(6),935.40 Fleury B, Godon N, Ayral A, et al.Journal of Nuclear Materials,2013,442(1-3),17.41 Suraneni P, Palacios M, Flatt R J.Cement and Concrete Research,2016,79,209.42 Gruskovnjak A, Lothenbach B, Winnefeld F, et al.Cement and Concrete Research,2008,38(7),983.43 Whittaker M, Zajac M, Ben Haha M, et al.Cement and Concrete Research,2014,66,91.44 Fernández-Jiménez A, Garcia-Lodeiro I, Maltseva O, et al.Journal of the American Ceramic Society,2019,102(5),427.45 Alahrache S, Winnefeld F, Champenois J B, et al.Cement and Concrete Composites,2016,66,10.46 García-Lodeiro I, Fernández-Jiménez A, Palomo A.Cement and Concrete Composites,2013,52,112.47 García-Lodeiro I, Donatello S, Fernández-Jiménez A, et al.Materials,2016,9,605.48 Matschei T, Lothenbach B, Glasser F P.Cement and Concrete Research,2007,37(4),551.
[1] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[2] 杜飞跃, 周徐, 谢叔媚, 王二静, 王世敏. 兼具聚集诱导发光和激发态分子内质子转移特性的有机小分子发光体[J]. 材料导报, 2020, 34(Z1): 498-502.
[3] 张耀君, 张叶, 韩智超, 贺攀阳, 陈浩. 地质聚合物原位转化沸石分子筛的研究进展[J]. 材料导报, 2020, 34(23): 23033-23041.
[4] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[5] 孙道胜, 叶哲, 刘开伟, 王爱国, 管艳梅, 陈东. 碱矿渣胶凝材料的固砂特性及抗硫酸盐侵蚀性能[J]. 材料导报, 2020, 34(10): 10061-10067.
[6] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[7] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[8] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[9] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[10] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[11] 翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展*[J]. CLDB, 2017, 31(5): 139-144.
[12] 张兰芳,刘丽娜,曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 《材料导报》期刊社, 2017, 31(24): 15-19.
[13] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[14] 陈毕达, 甘贵生, 吴懿平, 区燕杰. 蓝光激发余辉型荧光粉的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 37-45.
[15] 史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed