Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5174-5180    https://doi.org/10.11896/cldb.19090009
  高分子与聚合物基复合材料 |
改性PVDF或替代PVDF粘结剂在锂电池中的应用研究进展
彭黎波1, 叶诚曦1, 童庆松1,2, 翁景峥1,2
1 福建师范大学化学与材料学院,福州 350007
2 福建师范大学福建省高分子材料重点实验室,福州 350007
Research Progress of Replacing Traditional PVDF Binder with Functional Binder for Lithium Batteries
PENG Libo1, YE Chengxi1, TONG Qingsong1,2, WENG Jingzheng1,2
1 College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
2 Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
下载:  全 文 ( PDF ) ( 3451KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在锂电池中,粘结剂主要用来稳定电极结构,虽然含量较少,但是对电池性能影响较大。聚偏氟乙烯(PVDF)是目前主要使用的粘结剂,但其在不同活性物质中的应用存在不同的缺陷。因此对于不同活性物质应选用不同的粘结剂。在正极中,磷酸铁锂和三元材料(NCM)由于本身晶型限制,表现出较差的导电性和离子电导率,具有更高离子扩散系数的粘结剂对电池性能的提高作用更明显。硫正极在充放电过程中,“飞梭效应”是导致电池性能变差的主要因素之一,而具有含氧官能团的粘结剂捕获多硫化锂能力极强,对电池性能的提高作用明显。
对于锂电池负极活性材料,传统PVDF粘结剂易与碳基材料反应导致锂盐沉积在负极,影响电池性能。因此在电池循环中,能产生更均一且稳定的SEI膜的粘结剂可阻止活性物质脱落和促进锂离子传导,提高电池性能。硅基负极材料在脱嵌锂过程中,材料体积变化较大,易使活性物质从集流体上脱落,而粘弹性适中且具有立体网状结构的粘结剂可以使硅负极发生可逆膨胀,减少活性物质损失,提升电池性能。此外,尖晶石结构的LTO负极材料导电性较差,人们对导电聚合物粘结剂关注较多,未来其也将会是主要研究方向之一。
本文将近几年关于粘结剂的文献基于活性材料进行分类综述,探究粘结剂对锂电池的影响,并对未来正负极粘结剂的发展趋势进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭黎波
叶诚曦
童庆松
翁景峥
关键词:  锂电池  粘结剂  活性材料  正极  负极    
Abstract: In the Li-ion batteries (LIBs), one of the main functions of binder is used to stabilize the electrode structure. Although the content of binder is little, it has great influence on the performance of the battery. Polyvinylidene fluoride (PVDF) is the main commercial binder at present, but its application in different kinds of active substances has different defects. Therefore, the appropriate binders should be selected for different cathode or anode active materials. In cathode, lithium iron phosphate (LFP) and ternary materials (NCM) exihibit poor conductivity and ionic conductivity due to their intrinsic crystal constructure. Therefore, the binder with higher ion diffusion coefficient can obviously improve the performance of battery. During the process of charging and discharging, “shuttle effect” is one of the main factors leading to poor performance of lithium sulfur battery. The binders with oxygen-containing functional groups have strong capture ability to lithium polysulfide, which can significantly improve battery performance.
For anode materials in LIBs, traditional PVDF binder is easy to react with carbon based materials to form SEI film. Lithium salt is easily deposited on the surface of the active material, which affects the performance of the battery. Therefore, during the charging and discharging process, the binder that can produce a uniform and stable SEI film can significantly improve the battery performance. Because the SEI film can prevent the active material from falling off and promote Li+ migration. Then, the volume of silicon-based anode material changes greatly during the process of charging and discharging, and these volume changes make the active material fall off from the collector easily. The binders with moderate viscoelasticity and three-dimensional network structure can make the volume expanded of the silicon-based anode reversibly and the loss of active material is reduced. Therefore, this type of binder can significantly improve the battery performance. In addition, spinel-structured lithium titanium oxide (LTO) exhibit poor conductivity, conductive polymer binder will be one of main research directions in the future.
This article reviewed the binder applied in different active materials based on Li-ion batteries in recent years. The effects of binders on the Li-ion cells performance were mainly introduced, and future prospects of research and applications of binders in different kinds of LIBs were presented.
Key words:  lithium battery    binder    active material    cathod    anode
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TM912.9  
基金资助: 福建省引导性(重点)项目(2018H0009)
通讯作者:  jackyweng@vip.163.com   
作者简介:  彭黎波,2014年6月毕业于莆田学院,获得理学学士学位。现为福建师范大学化学与材料学院硕士研究生,在翁景峥副研究员的指导下进行研究。目前主要从事锂电池正极粘结剂的研究。
翁景峥,福建师范大学化学与材料学院副研究员、硕士研究生导师。1995年7月本科毕业于浙江大学高分子系,2017年12月在福建农林大学材料工程学院林业科学专业取得博士学位。主要从事锂电池相关的研究工作。
引用本文:    
彭黎波, 叶诚曦, 童庆松, 翁景峥. 改性PVDF或替代PVDF粘结剂在锂电池中的应用研究进展[J]. 材料导报, 2021, 35(5): 5174-5180.
PENG Libo, YE Chengxi, TONG Qingsong, WENG Jingzheng. Research Progress of Replacing Traditional PVDF Binder with Functional Binder for Lithium Batteries. Materials Reports, 2021, 35(5): 5174-5180.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090009  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5174
1 Huang J Q, Zhang Q, Wei F. Energy Storage Materials,2015,1,127.
2 Chou S L, Pan Y, Wang J Z, et al. Physical Chemistry Chemical Phy-sics,2014,16(38),20347.
3 Rezvani S J, Pasqualini M, Witkowska A, et al. Applied Surface Science,2018,435,1029.
4 Wang C, Bao J J, Huang Y P, et al. Adhesion,2018,39(6),53(in Chinese).
王超,鲍俊杰,黄毅萍,等.粘接,2018,39(6),53.
5 Zhao B B, Zhang Z Q, Wang Y Q, et al. Journal of Solid State Electrochemistry,2019,23(4),1269.
6 Akhtar N, Shao H Y, Ai F, et al. Electrochimica Acta,2018,282,758.
7 Hao L S, Cai Z P, Li W S. Chinese Journal of Power Sources,2010,34(3),303(in Chinese).
郝连升,蔡宗平,李伟善.电源技术,2010,34(3),303.
8 Tang X C, Li L X, Lai Q L, et al. Electrochimica Acta,2009,54(8),2329.
9 Ferreria G R, Oliveira J, Silva M P, et al. ACS Applied Energy Mate-rials,2018,1(7),3331.
10 Gao S Y, Su Y F, Bao L Y, et al. Journal of Power Sources,2015,298,292.
11 Tsao C H, Wu E T, Lee W H, et al. ACS Applied Energy Materials,2018,1(8),3999.
12 He J R, Wang J L, Zhong H X, et al. Electrochimica Acta,2015,182,900.
13 He J R, Zhong H X, Zhang L Z. Journal of Applied Polymer Science,2018,135(14),46132.
14 Huang S, Ren J G, Liu R, et al. ACS Sustainable Chemistry & Enginee-ring,2018,6(10),12650.
15 Qiu L, Shao Z Q, Wang D X, et al. Carbohydrate Polymers,2014,112,532.
16 Ding L. Chinese Journal of Power Sources,2015,39(8),1780.
丁玲.电源技术,2015,39(8),1780.
17 Chen Z, Kim G T, Chao D L, et al. Journal of Power Sources,2017,372,180.
18 Xu J T, Chou S L, Gu Q F, et al. Journal of Power Sources,2013,225(3),172.
19 Zhong H X, Sun M H, Li Y, et al. Journal of Solid State Electrochemistry,2016,20(1),1.
20 Chen Y L, Liu N Q, Shao H Y, et al. Journal of Materials Chemistry A,2015,3(29),15235.
21 Ai G, Dai Y L, Ye Y F, et al. Nano Energy,2015,16,28.
22 Wang H L, Ling M, Bai Y, et al. Journal of Materials Chemistry A,2018,6,6959.
23 Wang Z H, Chen Y L, Battaglia V, et al. Journal of Materials Research,2014,29(9),1027.
24 Zeng F L, Wang W K, Wang A B, et al. ACS Applied Materials & Interfaces,2015,7(47),26257.
25 Lacey M J, Jeschull F, Edström K, et al. Journal of Power Sources,2014,264,8.
26 Zhou G M, Liu K, Fan Y C, et al. ACS Central Science,2018,4,260.
27 Wu X F, Luo C, Du L L, et al. ACS Sustainable Chemistry & Enginee-ring,2019,7(9),8413.
28 Zhang H, Hu X H, Zhang Y, et al. Energy Storage Materials,2019,17,293.
29 Yi H, Lan T, Yang Y, et al. Journal of Materials Chemistry A,2018,6,18660.
30 Li Y, Zeng Q C, Gentle L R, et al. Journal of Materials Chemistry A,2017,5,5460.
31 Li G R, Cai W L, Liu B H, et al. Journal of Power Sources,2015,294,187.
32 Wang H Y, Umeno T, Mizuma K,et al. Journal of Power Sources,2008,175(2),886.
33 Ling M, Xu Y N, Zhao H,et al. Nano Energy,2015,12,178.
34 Zhang C Q, Yang F, Zhang D L, et al. RSC Advances,2015,5,15940.
35 Cuesta N, Ramos A, Cameán I,et al. Electrochimica Acta,2015,155,140.
36 Rezvani S J, Pasqualini M, Witkowska A,et al. Applied Surface Science,2018,435,1029.
37 Lee J H, Choi Y M, Paik U, et al. Journal of Electroceramics,2006,17(2),657.
38 Yen J P, Lee C M, Wu T L, et al. ECS?Electrochemistry Letters,2012,1(6),A80.
39 Chai L L, Qu Q T, Zhang L F, et al. Electrochimica Acta,2013,105,378.
40 Patnaik S G, Vedarajan R, Matsumi N. Journal of Materials Chemistry A,2017,5,17909.
41 Wang Y, Zheng H Y, Qu Q T, et al. Carbon,2015,92,318.
42 Lim S, Chu H, Lee K, et al. Acs Applied Materials & Interfaces,2015,7(42),23545.
43 Zhang L, Zhang L Y, Chai L L, et al. Journal of Materials Chemistry A,2014,2(44),19036.
44 Kuruba R, Datta M K, Damodaran K, et al. Journal of Power Sources,2015,298,331.
45 Jeena M T, Bok T, Kim S H, et al. Nanoscale,2016,8(17),9245.
46 Liu J, Zhang Q, Zhang T, et al. Advanced Functional Materials,2015,25(23),3599.
47 Chu H, Lee K, Lim S, et al. Macromolecular Research,2018,26(8),pp738.
48 Liu Z, Han S J, Xu C, et al. RSC Advances,2016,6(72),68371.
49 Lee B R, Oh E S. The Journal of Physical Chemistry C,2013,117(9),4404.
50 Lee B R, Kim S J, Oh E S. Journal of the Electrochemical Society,2014,161(14),A2128.
51 Shkreba E V, Eliseeva S N, Apraksin R N, et al. Mendeleev Communications,2019,29(1),105.
52 Lee H J, Choi I, Kim K, et al. Journal of Electroanalytical Chemistry,2016,782,241.
53 Kim S J, Lee B R, Oh E S. Journal of Power Sources,2015,273,608.
54 Han S W, Kim S J, Oh E S. The Electrochemical Society,2014,161(4),A587.
55 Farooq U, Choi J H, Atif Pervez S, et al. Materials Letters,2014,136,254.
[1] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[2] 田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
[3] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[4] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[5] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[6] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[7] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[8] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[9] 李宵波, 张盼盼, 何亚鹏, 黄惠, 郭忠诚. 铅酸电池负极添加剂的研究进展[J]. 材料导报, 2020, 34(5): 5039-5047.
[10] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[11] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[12] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[13] 蓝彬栩, 张文卫, 罗平, 汤臣, 唐稳, 左春丽, 董仕节, 陈丽能. 水系锌离子电池负极材料的研究进展[J]. 材料导报, 2020, 34(13): 13068-13075.
[14] 袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
[15] 张英杰, 张举峰, 段建国, 任婷, 董鹏, 王丁. 钠离子电池Sb基负极材料的研究进展[J]. 材料导报, 2020, 34(11): 11106-11113.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed