Abstract: Biomass-based hard carbon is a widely used material in the preparation of anode materials for sodium-ion batteries due to its low cost and abundance of carbon sources. However, the electrical properties of biomass-based hard carbon materials prepared by direct carbonization are difficult to meet the demand due to the limitations of biomass precursor components and structural properties. Consequently, there has been a surge in research activity aimed at optimising the components and structure of biomass precursors through the application of specific pretreatment techniques. This paper presents a comprehensive overview of the various pretreatment processes, their roles and mechanisms of biomass resource utilisation, and the latest research developments in the field of biomass-based hard carbon anode materials for sodium-ion batteries. The paper reviews the efficacy of three main categories of chemical, physical and biological pretreatment techniques, and provides a reference point for subsequent researchers engaged in the selection and application of pretreatment processes for biomass-based hard carbon materials.
1 Xia Q, Liu H, Zhao X S. Journal of Materials Chemistry A, 2022, 10(8), 3889. 2 Balogun M S, Luo Y, Qiu W, et al. Carbon, 2016, 98, 162. 3 Cheng D, Zhou X, Hu H, et al. Carbon, 2021, 182, 758. 4 Prajapati A K, Bhatnagar A. Journal of Energy Chemistry, 2023, 4, 43. 5 Mei Y, Huang Y, Hu X. Journal of Materials Chemistry A, 2016, 4(31), 12001. 6 Desai A V, Rainer D N, Pramanik A, et al. Small Methods, 2021, 5(12), 2101016. 7 Saurel D, Orayech B, Xiao B, et al. Advanced Energy Materials, 2018, 8(17), 1703268. 8 Sun N, Qiu J, Xu B. Advanced Energy Materials, 2022, 12(27), 2200715. 9 Beda A, Taberna P L, Simon P, et al. Carbon, 2018, 139, 248. 10 Rios C D M S, Simonin L, Ghimbeu C M, et al. Fuel Processing Technology, 2022, 231, 107223. 11 Alvira D, Antorán D, Manyà J J. Chemical Engineering Journal, 2022, 447, 137468. 12 Wang S, Dai G, Yang H, et al. Progress in Energy and Combustion Science, 2017, 62, 33. 13 Cai J, He Y, Yu X, et al. Renewable and Sustainable Energy Reviews, 2017, 76, 309. 14 Berglund J, Mikkelsen D, Flanagan B M, et al. Nature Communications, 2020, 11(1), 4692. 15 Rath S, Pradhan D, Du H, et al. Advanced Composites and Hybrid Materials, 2024, 7(1), 1. 16 Figueiredo P, Lintinen K, Hirvonen J T, et al. Progress in Materials Science, 2018, 93, 233. 17 Huang D, Li R, Xu P, et al. Chemical Engineering Journal, 2020, 402, 126237. 18 Petridis L, Smith J C. Nature Reviews Chemistry, 2018, 2(11), 382. 19 Zhou S, Tang Z, Pan Z, et al. SusMat, 2022, 2(3), 357. 20 Kandhola G, Djioleu A, Carrier D J, et al. BioEnergy Research, 2017, 10, 1138. 21 Zhou S, Xue Y, Cai J, et al. Chemical Engineering Journal, 2021, 411, 128513. 22 Liu B, Liu L, Deng B, et al. International Journal of Biological Macromolecules, 2022, 222, 1400. 23 Perez-Almada D, Galán-Martín Á, Del Mar C M, et al. Sustain Energy Fuels, DOI:10. 1039/d3se90047a. 24 Li X, Kim T H, Nghiem N P. Bioresource Technology, 2010, 101(15), 5910. 25 Vaidya A A, Murton K D, Smith D A, et al. Biomass Conversion and Biorefinery, 2022, 12(11), 5427. 26 Wei K C D, Lim S, Pang Y L, et al. Biofuels, Bioproducts and Biorefining, 2020, 14(4), 808. 27 Meng X, Bhagia S, Wang Y, et al. Industrial Crops and Products, 2020, 146, 112144. 28 Sarkar D, Santiago I J, Vermaas J V. Chemical Engineering Science, 2023, 272, 118587. 29 Hou Q, Ju M, Li W, et al. Molecules, 2017, 22(3), 490. 30 Williams C L, Li C, Hu H, et al. Frontiers in Energy Research, 2018, 6, 67. 31 Serna-Loaiza S, Dias M, Daza-Serna L, et al. Sustainability, 2021, 14(1), 362. 32 Scapini T, Dos Santos M S, Bonatto C, et al. Bioresource Technology, 2021, 342, 126033. 33 Singh A, Tsai M L, Chen C W, et al. Bioresource Technology, 2023, 367, 128271. 34 Gu B J, Wang J, Wolcott M P, et al. Bioresource Technology, 2018, 251, 93. 35 Sapci Z. Bioresource Technology, 2013, 128, 487. 36 Liu Y, Sun B, Zheng X, et al. Bioresource Technology, 2018, 247, 859. 37 Zhou J, Yan B, Wang Y, et al. RSC Advances, 2016, 6(91), 88417. 38 Zhang B, Li H, Chen L, et al. Processes, 2022, 10(10), 1959. 39 Hoang A T, Nguyen X P, Duong X Q, et al. Bioresource Technology, 2023, 129398. 40 Kumar P, Kermanshahi-Pour A, Brar S K, et al. Advanced Sustai-nable Systems, 2021, 5(4), 2000275. 41 He S, Fan X, Luo S, et al. Energy Conversion and Management, 2017, 135, 291. 42 Sharma A, Aggarwal N K, Sharma A, et al. Water Hyacinth, A Potential Lignocellulosic Biomass for Bioethanol, 2020, 51. 43 Meenakshisundaram S, Fayeulle A, Leonard E, et al. Bioresource Technology, 2021, 331, 125053. 44 Koupaie E H, Dahadha S, Lakeh A B, et al. Journal of Environmental Management, 2019, 233, 774. 45 Chen D, Gao D, Huang S, et al. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105027. 46 Amnuaycheewa P, Hengaroonprasan R, Rattanaporn K, et al. Industrial Crops and Products, 2016, 87, 247. 47 Torget R, Walter P, Himmel M, et al. Applied Biochemistry and Biotechnology, 1991, 28, 75. 48 Xia L, Zhang C, Wang A, et al. Cellulose, 2020, 27, 1909. 49 Šoštarić T D, Petrović M S, Pastor F T, et al. Journal of Molecular Li-quids, 2018, 259, 340. 50 Nan F, Nagarajan S, Chen Y, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 8951. 51 Tang C, Shan J, Chen Y, et al. Bioresource Technology, 2017, 232, 222. 52 Oliva A, Tan L C, Papirio S, et al. Renewable Energy, 2021, 169, 1000. 53 Swatloski R P, Spear S K, Holbrey J D, et al. Journal of the American chemical society, 2002, 124(18), 4974. 54 Zhu L, Xu A, Zhang H, et al. Current Organic Chemistry, 2019, 23(20), 2145. 55 Zakaria M R, Fujimoto S, Hirata S, et al. Applied Biochemistry and Biotechnology, 2014, 173, 1778. 56 Sandberg C, Berg J E, Engstrand P. Nordic Pulp & Paper Research Journal, 2017, 32(4), 615. 57 Marim B M, Mantovan J, Giraldo G A, et al. Journal of Chemical Technology & Biotechnology, 2021, 96(3), 630. 58 Kumar P, Pour A K, Brar S K, et al. Heliyon, DOI:10. 1016/j. he-liyon. 2023. e21811. 59 Pan Y J, Zhang L, Guo J, et al. Renewable Energy Resources, 2005(3), 33 (in Chinese). 潘亚杰, 张雷, 郭军, 等. 可再生能源, 2005(3), 33. 60 Lou C, Zhou Y, Yan A, et al. RSC Advances, 2022, 12(2), 1208. 61 Li Y, Vasileiadis A, Zhou Q, et al. Nature Energy, 2024, 1, 134. 62 Marsh H, Reinoso F R. Activated carbon, DOI:10.1002/j.1551-8833.1981.tb04748.x. 63 Stevens D, Dahn J. Journal of the Electrochemical Society, 2000, 147(4), 1271. 64 Cao Y, Xiao L, Sushko M L, et al. Nano Letters, 2012, 12(7), 3783. 65 Bommier C, Surta T W, Dolgos M, et al. Nano Letters, 2015, 15(9), 5888. 66 Zhang B, Ghimbeu C M, Laberty C, et al. Advanced Energy Materials, 2016, 6(1), 1501588. 67 Chen X, Liu C, Fang Y, et al. Carbon Energy, 2022, 4(6), 1133. 68 Anji R M, Helen M, Groß A, et al. ACS Energy Letters, 2018, 3(12), 2851. 69 Kitsu I L, Antonio E N, Martinez T D, et al. Advanced Energy Materials, 2023, 13(44), 2302171. 70 Li Z, Bommier C, Chong Z S, et al. Advanced Energy Materials, 2017, 7(18), 1602894. 71 Chen D, Zhang W, Luo K, et al. Energy & Environmental Science, 2021, 14(4), 2244. 72 Bai P, He Y, Zou X, et al. Advanced Energy Materials, 2018, 8(15), 1703217. 73 Wahid M, Gawli Y, Puthusseri D, et al. ACS Omega, 2017, 2(7), 3601. 74 Zhao X, Ding Y, Xu Q, et al. Advanced Energy Materials, 2019, 9(10), 1803648. 75 Wang P, Zhu X, Wang Q, et al. Journal of Materials Chemistry A, 2017, 5(12), 5761. 76 Dou X, Hasa I, Hekmatfar M, et al. ChemSusChem, 2017, 10(12), 2668. 77 Wang X K, Shi J, Mi L W, et al. Rare Metals, 2020, 39, 1053. 78 Wang J, Zhao J, He X, et al. Sustainable Materials and Technologies, 2022, 33, e00446. 79 Darjazi H, Bottoni L, Moazami H, et al. Materials Today Sustainability, 2023, 21, 100313. 80 Tang T, Zhu W, Lan P, et al. Chemical Engineering Journal, 2023, 475, 146212. 81 Deng W, Cao Y, Yuan G, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 47728. 82 Xu T, Qiu X, Zhang X, et al. Chemical Engineering Journal, 2023, 452, 139514. 83 Thenappan M, Rengapillai S, Marimuthu S. Energies, 2022, 15(21), 8086. 84 Wang J, Yan L, Ren Q, et al. Electrochimica Acta, 2018, 291, 188. 85 Gao Y, Piao S, Jiang C, et al. Diamond and Related Materials, 2022, 129, 109329. 86 Cong L, Tian G, Luo D, et al. Journal of Electroanalytical Chemistry, 2020, 871, 114249. 87 Yan L, Wang J, Ren Q, et al. Chemical Engineering Journal, 2022, 432, 133257. 88 Yu K, Wang X, Yang H, et al. Journal of Energy Chemistry, 2021, 55, 499. 89 Tang Z. Structure and interface regulating of hard carbon anode materials for Na-ion batteries. Ph. D. Thesis, Central South University, China, 2023 (in Chinese). 唐正. 硬碳负极材料结构与界面调控及储钠性能研究. 博士学位论文, 中南大学, 2023 90 Chen L. Preparation of basswood carbon enzymolysis by bacillus licheniformis and its electrochemical performance as anode material for sodium-ion batteries. Master’s Thesis, Huazhong Agricultural University, China, 2023 (in Chinese). 陈林. 芽孢杆菌酶解椴木碳的制备及其作为钠离子电池负极材料电化学性能的研究. 硕士学位论文, 华中农业大学, 2023. 91 Song Z, Li F, Mao L, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(41), 15020. 92 Li W, Nazhipkyzy M, Bandosz T J. Journal of Energy Chemistry, 2021, 57, 639. 93 Frank E, Steudle L M, Ingildeev D, et al. Angewandte Chemie International Edition, 2014, 53(21), 5262. 94 Xi Y, Huang S, Yang D, et al. Green Chemistry, 2020, 22(13), 4321. 95 Tang J J, Li X Y, Chen Y Q, et al. Materials Reports, 2024, 38(18), 23040228 (in Chinese). 唐晶晶, 李晓滢, 陈言蹊, 等. 材料导报, 2024, 38(18), 23040228.