Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24050228-11    https://doi.org/10.11896/cldb.24050228
  无机非金属及其复合材料 |
锂离子电池中锗基负极材料的构建及改性研究
苟清懿1, 廖华2, 陈凤阳2, 曾瑞林2, 刘慧哲1, 杨妮3, 侯彦青1,2,*, 谢刚3
1 昆明理工大学复杂有色资源清洁利用国家重点实验室,昆明 650000
2 昆明理工大学冶金与能源工程学院,昆明 650000
3 昆明冶金研究院有限公司,昆明 650000
Construction and Modification of Germanium-based Anode Materials in Lithium-ion Batteries
GOU Qingyi1, LIAO Hua2, CHEN Fengyang2, ZENG Ruilin2, LIU Huizhe1, YANG Ni3, HOU Yanqing1,2,*, XIE Gang3
1 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650000, China
2 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650000, China
3 Kunming Metallurgical Research Institute Co., Ltd., Kunming 650000, China
下载:  全 文 ( PDF ) ( 31568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池因高能量密度、长循环寿命、无记忆效应等特点在便携式电子器件和电动汽车中得到了广泛的应用。锗基负极材料以高理论比容量(约为碳的4倍)、低嵌锂电位以及良好的导电性(约为硅的104倍)等优点成为当前锂离子电池领域的研究热点之一。近年来研究者们对其合成与改性进行大量研究并取得突破性的成功,然而锗基负极材料在循环稳定性方面仍存在诸多挑战,这主要因为锗基负极材料在充放电过程中存在严重的体积效应且界面不稳定。本文从低维度纳米化、多孔化、碳材料复合和合金化四种改性策略入手,介绍各类锗基负极材料的制备方法、形貌、结构以及电化学性能。最后,讨论了锗基负极材料改性方法和手段的研究进展以及未来研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苟清懿
廖华
陈凤阳
曾瑞林
刘慧哲
杨妮
侯彦青
谢刚
关键词:  锗基负极材料  锂离子电池  碳锗复合材料  纳米结构  合金化    
Abstract: Lithium-ion batteries have been widely used in portable electronic devices and electric vehicles due to their high energy density, long cycle life, and no memory effect. Germanium-based anode materials have emerged as a key focus of research in the realm of lithium-ion batte-ries, owing to their high theoretical specific capacity (approximately 4 times that of graphite), low lithium insertion potential, and excellent conductivity (roughly 104 times that of silicon). In recent years, researchers have conducted extensive studies on the synthesis and modification of germanium-based anode materials, resulting in significant breakthroughs. However, there are still many challenges in the cycling stability of germa-nium-based anode materials, mainly due to the severe volume effect and unstable interface during the charge and discharge processes. This paper presents the preparation methods, morphology, structure, and electrochemical performance of diverse germanium-based anode materials through the lens of four modification strategies: dimensional nanostructuring, porous structuring, carbon material composites, and alloying. Finally, it delves into the research progress of modification techniques and approaches for germanium-based anode materials, along with outlining future research directions.
Key words:  germanium-based anode material    lithium-ion battery    carbon-germanium composite material    nanostructure    alloying
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TQ152  
基金资助: 国家自然科学基金(22168019)
通讯作者:  侯彦青,昆明理工大学冶金与能源动力学院教授、博士研究生导师。目前主要从事冶金过程仿真模拟、冶金环保、冶金过程智能化等方面的研究工作。hhouyangqing@163.com   
作者简介:  苟清懿,现为昆明理工大学复杂有色资源清洁利用国家重点实验室研究生,在侯彦青教授的指导下进行研究。目前主要研究领域为新能源材料、半导体材料、锂离子电池。
引用本文:    
苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
GOU Qingyi, LIAO Hua, CHEN Fengyang, ZENG Ruilin, LIU Huizhe, YANG Ni, HOU Yanqing, XIE Gang. Construction and Modification of Germanium-based Anode Materials in Lithium-ion Batteries. Materials Reports, 2025, 39(8): 24050228-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050228  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24050228
1 Lin D, Liu Y, Cui Y. Nature Nanotechnology, 2017, 12(3), 194.
2 Cha E, Yun J H, Ponraj R, et al. Materials Chemistry Frontiers, 2021, 5(17), 6294.
3 Chockla A M, Klavetter K C, Mullins C B, et al. ACS Applied Materials & Interfaces, 2012, 4(9), 4658.
4 Du F H, Li B, Fu W, et al. Advanced Materials, 2014, 26(35), 6145.
5 Cen Y J, Richard S, Qin Q W, et al. Journal of Carbon Research, 2018, 4(1), 2311.
6 Miyazaki R, Ohta N, Ohnishi T, et al. Journal of Power Sources, 2014, 272(dec. 25), 541.
7 Salah M, Hall C, Francis C, et al. Journal of Power Sources, 2022, 520, 520.
8 Zhang M, Wang T, Cao G. International Materials Reviews, 2015, 60(6), 330.
9 Chi C X, Yang Y, Qiao X L. Rare Metal Materials and Engineering, 2020, 49(5), 1810 (in Chinese).
迟彩霞, 杨宇, 乔秀丽, 等. 稀有金属材料与工程, 2020, 49(5), 1810.
10 Hao J, Wang Y, Guo Q, et al. Particle & Particle Systems Characterization, 2019, 36(9), 248.
11 Liu X H, Zhong L, Huang S, et al. ACS Nano, 2012, 6(2), 1522.
12 Liu J, Li Y, Zhang K, et al. Journal Of Colloid And Interface Science, 2024, 654(Pt A), 258.
13 Liu X H, Wang J W, Liu Y, et al. Carbon, 2012, 50(10), 3836.
14 Liu X H, Huang S, Picraux S T, et al. Nano Letters, 2011, 11(9), 3991.
15 Miao J, Wang B, Thompson C V. Journal of The Electrochemical Society, 2020, 167(9), 1945.
16 Limthongkul P, Jang Y I, Dudney N J, et al. Journal of Power Sources, 2003, 119(Jun), 604.
17 Arro C R, Mohamed A T I, Bensalah N. Materials Today Communications, 2022, 30, 103151.
18 Kennedy T, Mullane E, Geaney H, et al. Nano Letters, 2014, 14(2), 716.
19 Dass D. Applied Surface Science, 2019, 488, 404.
20 Li D, Wang H, Zhou T, et al. Advanced Energy Materials, 2017, 7(23), 488.
21 Al-Obeidi A, Kramer D, Thompson C V, et al. Journal of Power Sources, 2015, 297, 472.
22 Wang K, Song X, Cao X, et al. Journal of the Electrochemical Society, 2023, 170(10), 1945.
23 Ko M, Chae S, Cho J J C. ChemElectroChem, 2015, 2(11), 1645.
24 Al-Obeidi A, Kramer D, Mönig R, et al. Journal of Power Sources, 2016, 306, 817.
25 Xu R, Yang Y, Yin F, et al. Journal of the Mechanics and Physics of Solids, 2019, 129(AUG. ), 160.
26 Noelle D J, Wang M, Qiao Y. Journal of Power Sources, 2018, 399: 125.
27 Li X, Meng G, Xu Q, et al. Nano Letters, 2011, 11(4), 1704.
28 Li X, Liang J, Hou Z, et al. Chemical Communications, 2014, 50(90), 13956.
29 Gao X, Luo W, Zhong C, et al. Scientific Reports, 2014, 4, 6095.
30 Diolaiti V, Andreoli A, Chauque S, et al. IEEE Transactions on Nanotechnology, 2023, 22, 552.
31 Ngo D T, Le H T T, Kim C, et al. Energy & Environmental Science, 2015, 8(12), 3577.
32 Xu J, Gong R, Chinese Journal of Power Sources, 2022, 46(6), 613-616 (in Chinese).
许静, 龚荣. 电源技术, 2022, 46(6), 613.
33 Murata H, Nozawa K, Suzuki T, et al. Scientific Reports, 2022, 12(1), 13779.
34 Ma W, Wang Y, Yang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(9), 9073.
35 Wang J, Du N, Zhang H, et al. Journal of Power Sources, 2012, 22(4), 1511.
36 Kim C, Hwang U, Lee S, et al. Nanomaterials, 2023, 13(21), 2868.
37 Wang X D, Li X P, Sun Z B, et al. Progress in Chemistry, 2007, 37(2), 597 (in Chinese).
王小东, 李雪鹏, 孙占波, 等. 化学进展, 2007, 37(2), 597.
38 Attar G S, Liu M, Lai C Y, et al. Crystals, 2021, 11(10), 1216.
39 Lee H, Cho J J N L. Nano Letters, 2007, 7(9), 2638.
40 Abel P R, Chockla A M, Lin Y M, et al. . ACS Nano, 2013, 7(3), 2249.
41 Liu C, He Y Q, Deng L, et al. ACS Applied Materials & Interfaces, 2020, 12(45), 50756.
42 Luo W, Shen D, Zhang R, et al. Advanced Functional Materials, 2016, 26(43), 7800.
43 Mullane E, Kennedy T, Geaney H, et al. ACS Applied Materials & Interfaces, 2014, 6(21), 18800.
44 Flynn G, Palaniappan K, Sheehan M, et al. Nanotechnology, 2017, 28(25), 1361.
45 Park M H, Cho Y, Kim K, et al. Angewandte Chemie International Edition, 2011, 50(41), 9647.
46 Liu X, Hao J, Liu X, et al. Chemical Communications Royal Society of Chemistry, 2015, 51(11), 2064.
47 Gu J, Collins S M, Carim A I, et al. Nano Letters, 2012, 12(9), 4617.
48 Wang L, Bao K, Lou Z, et al. Dalton Transactions, 2016, 45(7), 2814.
49 McNulty D, Biswas S, Garvey S, et al. ACS Applied Energy Materials, 2020, 3(12), 11811.
50 Fang S, Shen L, Nie P, et al. Journal of Materials Science, 2013, 49(5), 2279.
51 Yu Z, Meng X, Yin M, et al. Chemical Physics Letters, 2018, 698, 181.
52 Kim S J, Park H C, Kim M C, et al. Journal of Power Sources, 2015, 273, 707.
53 Silberstein K E, Lowe M A, Richards B, et al. Langmuir, 2015, 31(6), 2028.
54 Choi H, Park C, Lee S K, et al. ACS Omega, 2023, 8(46), 43759.
55 Weindl C L, Fajman C E, Giebel M A, et al. ACS Applied Nano Materials, 2022, 5(5), 7278.
56 Medvedev A G, Mikhaylov A A, Grishanov D A, et al. ACS Applied Materials & Interfaces, 2017, 9(10), 9152.
57 Liu L, Wang X, Zhang X, et al. Ionics, 2019, 26(5), 2225.
58 Tabatabaei K, Sully H R, Ju Z, et al. ACS Nano, 2021, 15(1), 1685.
59 Feng J, Zhang Z, Liu J, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1031, 166595.
60 Rudawski N G, Darby B L, Yates B R, et al. Applied Physics Letters, 2012, 100(8), 1858.
61 Nemaga A W, Michel J, Morcrette M, et al. ACS Applied Materials & Interfaces, 2023, 15(39), 45790.
62 Park M H, Kim K, Kim J, et al. Advanced Materials, 2010, 22(3), 415.
63 Dupuy A, Aziziyan M R, Machon D, et al. Electrochimica Acta, 2021, 378(1), 137935.
64 Bioud Y A, Boucherif A, Belarouci A, et al. Electrochimica Acta, 2017, 232, 422.
65 Dupuy A, Roland A, Aziziyan M R, et al. Materials Today Communications, 2020, 26, 101820.
66 Yan Z, Naigen Z, Xiang L, et al. Dalton transactions: an International Journal of Inorganic Chemistry, 2022, 51(38), 14767.
67 Zhang C, Lin Z, Yang Z, et al. Chemistry of Materials, 2015, 27(6), 2189.
68 Choi S, Cho Y G, Kim J, et al. Small, 2017, 13(13), 1613.
69 Xiao C, Du N, Chen Y, et al. RSC Advances, 2015, 5(77), 63056.
70 Lee G H, Kwon S J, Park K S, et al. Scientific Reports, 2014, 4, 6883.
71 Li D, Feng C, Liu H K, et al. Journal of Materials Chemistry A, 2015, 3(3), 978.
72 Fang S, Shen L, Nie P, et al. Particle & Particle Systems Characterization, 2014, 32(3), 364.
73 Xia L D, Zhu H R, Liu S Y, et al. Applications and Materials Science EPSS, 2023, 220(6), 708.
74 Wang B, Jin J, Rui K, et al. Journal of Power Sources, 2018, 396, 124.
75 Lin N, Li T, Han Y, et al. ACS Applied Materials & Interfaces, 2018, 10(10), 8399.
76 Wang J, Du N, Song Z, et al. Journal of Power Sources, 2013, 229, 185.
77 Chen C, Shuang-Ke L, Jing X U, et al. Chinese Journal of Power Sources, 2018, 42(5), 611.
78 Liu R, Luo F, Zeng L, et al. Journal of Colloid and Interface Science, 2021, 584, 372.
79 Li W, Li M, Yang Z, et al. Small, 2015, 11(23), 2762.
80 Kaewraung W, Hasin P. Journal of Energy Storage, 2024, 82, 110517.
81 Kim S W, Ngo D T, Heo J, et al. Electrochimica Acta, 2017, 238, 319.
82 Garcia A, Biswas S, McNulty D, et al. ACS Applied Energy Materials, 2022, 5(2), 1922.
83 Jo C, Wen B, Jeong H, et al. ACS Nano, 2023, 17(9), 8403.
84 Jin S, Li N, Cui H, et al. ACS Applied Materials & Interfaces, 2014, 6(21), 19397.
85 Qiang T, Fang J, Song Y, et al. RSC Advances, 2015, 5(22), 17070.
86 Li W, Yang Z, Cheng J, et al. Nanoscale, 2014, 6(9), 4532.
87 Sultana I, Rahman M M, Glushenkov A M, et al. Electrochimica Acta, 2021, 391, 391.
88 Ren J G, Wu Q H, Tang H, et al. Journal of Materials Chemistry A, 2013, 1(5), 1821.
89 Koo J H, Paek S M J N. Nanomaterials, 2021, 11(2), 319.
90 Wang B, Wen Z, Jin J, et al. Journal of Power Sources, 2017, 342(FEB. 28), 521.
91 Liu B, Abouimrane A, Balasubramanian M, et al. The Journal of Physical Chemistry C, 2014, 118(8), 3960.
92 Kim H, Son Y, Lee J, et al. Chemistry of Materials, 2016, 28(17), 6146.
93 Zhang N, Ouyang S, Li P, et al. Chemical Communications, 2011, 47(7), 2041.
94 Kennedy T, Brandon M, Ryan K M. Advanced Materials, 2016, 28(27), 5696.
95 Zhao X, Wang C, Wang D, et al. Electrochemistry Communications, 2013, 35, 116.
96 Cao X, Cao Y, Peng H, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(35), 11883.
97 Bodnarchuk M, Kravchyk K, Krumeich F, et al. ACS Nano, 2014, 8(3), 2360.
98 Doherty J, McNulty D, Biswas S, et al. Nanotechnology, 2020, 31(16), 1361.
99 Jin S, Wang C. Nano Energy, 2014, 7, 63.
100 Gao Y, Tang Y, Liu L, et al. Small, 2023, 19(49), 2304593.
101 Yang Z, Bai S, Yue H, et al. Materials Letters, 2014, 136, 107.
102 Song T, Cheng H, Choi H, et al. ACS Nano, 2012, (1), 303.
103 Li F K, Wang X Y, Xu X J, et al. Inorganic Chemicals Industry, 2022, 54(4), 88 (in Chinese).
李方坤, 王心怡, 许希军, 等. 无机盐工业, 2022, 54(4), 88.
[1] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[2] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[3] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[4] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[5] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[6] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[7] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[8] 戴宇恒, 满廷慧, 李朋, 徐乐钱, 刘宇, 韦习成. 稀土合金化对高碳高合金工模具钢的影响[J]. 材料导报, 2024, 38(23): 23100036-8.
[9] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[10] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[11] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[12] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[13] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[14] 魏彦平, 魏凤春, 朱青松, 刘琦, 郭子涵. 金属-聚合物表面微纳形态的构筑与研究[J]. 材料导报, 2024, 38(19): 23090143-9.
[15] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed