Construction and Modification of Germanium-based Anode Materials in Lithium-ion Batteries
GOU Qingyi1, LIAO Hua2, CHEN Fengyang2, ZENG Ruilin2, LIU Huizhe1, YANG Ni3, HOU Yanqing1,2,*, XIE Gang3
1 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650000, China 2 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650000, China 3 Kunming Metallurgical Research Institute Co., Ltd., Kunming 650000, China
Abstract: Lithium-ion batteries have been widely used in portable electronic devices and electric vehicles due to their high energy density, long cycle life, and no memory effect. Germanium-based anode materials have emerged as a key focus of research in the realm of lithium-ion batte-ries, owing to their high theoretical specific capacity (approximately 4 times that of graphite), low lithium insertion potential, and excellent conductivity (roughly 104 times that of silicon). In recent years, researchers have conducted extensive studies on the synthesis and modification of germanium-based anode materials, resulting in significant breakthroughs. However, there are still many challenges in the cycling stability of germa-nium-based anode materials, mainly due to the severe volume effect and unstable interface during the charge and discharge processes. This paper presents the preparation methods, morphology, structure, and electrochemical performance of diverse germanium-based anode materials through the lens of four modification strategies: dimensional nanostructuring, porous structuring, carbon material composites, and alloying. Finally, it delves into the research progress of modification techniques and approaches for germanium-based anode materials, along with outlining future research directions.
1 Lin D, Liu Y, Cui Y. Nature Nanotechnology, 2017, 12(3), 194. 2 Cha E, Yun J H, Ponraj R, et al. Materials Chemistry Frontiers, 2021, 5(17), 6294. 3 Chockla A M, Klavetter K C, Mullins C B, et al. ACS Applied Materials & Interfaces, 2012, 4(9), 4658. 4 Du F H, Li B, Fu W, et al. Advanced Materials, 2014, 26(35), 6145. 5 Cen Y J, Richard S, Qin Q W, et al. Journal of Carbon Research, 2018, 4(1), 2311. 6 Miyazaki R, Ohta N, Ohnishi T, et al. Journal of Power Sources, 2014, 272(dec. 25), 541. 7 Salah M, Hall C, Francis C, et al. Journal of Power Sources, 2022, 520, 520. 8 Zhang M, Wang T, Cao G. International Materials Reviews, 2015, 60(6), 330. 9 Chi C X, Yang Y, Qiao X L. Rare Metal Materials and Engineering, 2020, 49(5), 1810 (in Chinese). 迟彩霞, 杨宇, 乔秀丽, 等. 稀有金属材料与工程, 2020, 49(5), 1810. 10 Hao J, Wang Y, Guo Q, et al. Particle & Particle Systems Characterization, 2019, 36(9), 248. 11 Liu X H, Zhong L, Huang S, et al. ACS Nano, 2012, 6(2), 1522. 12 Liu J, Li Y, Zhang K, et al. Journal Of Colloid And Interface Science, 2024, 654(Pt A), 258. 13 Liu X H, Wang J W, Liu Y, et al. Carbon, 2012, 50(10), 3836. 14 Liu X H, Huang S, Picraux S T, et al. Nano Letters, 2011, 11(9), 3991. 15 Miao J, Wang B, Thompson C V. Journal of The Electrochemical Society, 2020, 167(9), 1945. 16 Limthongkul P, Jang Y I, Dudney N J, et al. Journal of Power Sources, 2003, 119(Jun), 604. 17 Arro C R, Mohamed A T I, Bensalah N. Materials Today Communications, 2022, 30, 103151. 18 Kennedy T, Mullane E, Geaney H, et al. Nano Letters, 2014, 14(2), 716. 19 Dass D. Applied Surface Science, 2019, 488, 404. 20 Li D, Wang H, Zhou T, et al. Advanced Energy Materials, 2017, 7(23), 488. 21 Al-Obeidi A, Kramer D, Thompson C V, et al. Journal of Power Sources, 2015, 297, 472. 22 Wang K, Song X, Cao X, et al. Journal of the Electrochemical Society, 2023, 170(10), 1945. 23 Ko M, Chae S, Cho J J C. ChemElectroChem, 2015, 2(11), 1645. 24 Al-Obeidi A, Kramer D, Mönig R, et al. Journal of Power Sources, 2016, 306, 817. 25 Xu R, Yang Y, Yin F, et al. Journal of the Mechanics and Physics of Solids, 2019, 129(AUG. ), 160. 26 Noelle D J, Wang M, Qiao Y. Journal of Power Sources, 2018, 399: 125. 27 Li X, Meng G, Xu Q, et al. Nano Letters, 2011, 11(4), 1704. 28 Li X, Liang J, Hou Z, et al. Chemical Communications, 2014, 50(90), 13956. 29 Gao X, Luo W, Zhong C, et al. Scientific Reports, 2014, 4, 6095. 30 Diolaiti V, Andreoli A, Chauque S, et al. IEEE Transactions on Nanotechnology, 2023, 22, 552. 31 Ngo D T, Le H T T, Kim C, et al. Energy & Environmental Science, 2015, 8(12), 3577. 32 Xu J, Gong R, Chinese Journal of Power Sources, 2022, 46(6), 613-616 (in Chinese). 许静, 龚荣. 电源技术, 2022, 46(6), 613. 33 Murata H, Nozawa K, Suzuki T, et al. Scientific Reports, 2022, 12(1), 13779. 34 Ma W, Wang Y, Yang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(9), 9073. 35 Wang J, Du N, Zhang H, et al. Journal of Power Sources, 2012, 22(4), 1511. 36 Kim C, Hwang U, Lee S, et al. Nanomaterials, 2023, 13(21), 2868. 37 Wang X D, Li X P, Sun Z B, et al. Progress in Chemistry, 2007, 37(2), 597 (in Chinese). 王小东, 李雪鹏, 孙占波, 等. 化学进展, 2007, 37(2), 597. 38 Attar G S, Liu M, Lai C Y, et al. Crystals, 2021, 11(10), 1216. 39 Lee H, Cho J J N L. Nano Letters, 2007, 7(9), 2638. 40 Abel P R, Chockla A M, Lin Y M, et al. . ACS Nano, 2013, 7(3), 2249. 41 Liu C, He Y Q, Deng L, et al. ACS Applied Materials & Interfaces, 2020, 12(45), 50756. 42 Luo W, Shen D, Zhang R, et al. Advanced Functional Materials, 2016, 26(43), 7800. 43 Mullane E, Kennedy T, Geaney H, et al. ACS Applied Materials & Interfaces, 2014, 6(21), 18800. 44 Flynn G, Palaniappan K, Sheehan M, et al. Nanotechnology, 2017, 28(25), 1361. 45 Park M H, Cho Y, Kim K, et al. Angewandte Chemie International Edition, 2011, 50(41), 9647. 46 Liu X, Hao J, Liu X, et al. Chemical Communications Royal Society of Chemistry, 2015, 51(11), 2064. 47 Gu J, Collins S M, Carim A I, et al. Nano Letters, 2012, 12(9), 4617. 48 Wang L, Bao K, Lou Z, et al. Dalton Transactions, 2016, 45(7), 2814. 49 McNulty D, Biswas S, Garvey S, et al. ACS Applied Energy Materials, 2020, 3(12), 11811. 50 Fang S, Shen L, Nie P, et al. Journal of Materials Science, 2013, 49(5), 2279. 51 Yu Z, Meng X, Yin M, et al. Chemical Physics Letters, 2018, 698, 181. 52 Kim S J, Park H C, Kim M C, et al. Journal of Power Sources, 2015, 273, 707. 53 Silberstein K E, Lowe M A, Richards B, et al. Langmuir, 2015, 31(6), 2028. 54 Choi H, Park C, Lee S K, et al. ACS Omega, 2023, 8(46), 43759. 55 Weindl C L, Fajman C E, Giebel M A, et al. ACS Applied Nano Materials, 2022, 5(5), 7278. 56 Medvedev A G, Mikhaylov A A, Grishanov D A, et al. ACS Applied Materials & Interfaces, 2017, 9(10), 9152. 57 Liu L, Wang X, Zhang X, et al. Ionics, 2019, 26(5), 2225. 58 Tabatabaei K, Sully H R, Ju Z, et al. ACS Nano, 2021, 15(1), 1685. 59 Feng J, Zhang Z, Liu J, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1031, 166595. 60 Rudawski N G, Darby B L, Yates B R, et al. Applied Physics Letters, 2012, 100(8), 1858. 61 Nemaga A W, Michel J, Morcrette M, et al. ACS Applied Materials & Interfaces, 2023, 15(39), 45790. 62 Park M H, Kim K, Kim J, et al. Advanced Materials, 2010, 22(3), 415. 63 Dupuy A, Aziziyan M R, Machon D, et al. Electrochimica Acta, 2021, 378(1), 137935. 64 Bioud Y A, Boucherif A, Belarouci A, et al. Electrochimica Acta, 2017, 232, 422. 65 Dupuy A, Roland A, Aziziyan M R, et al. Materials Today Communications, 2020, 26, 101820. 66 Yan Z, Naigen Z, Xiang L, et al. Dalton transactions: an International Journal of Inorganic Chemistry, 2022, 51(38), 14767. 67 Zhang C, Lin Z, Yang Z, et al. Chemistry of Materials, 2015, 27(6), 2189. 68 Choi S, Cho Y G, Kim J, et al. Small, 2017, 13(13), 1613. 69 Xiao C, Du N, Chen Y, et al. RSC Advances, 2015, 5(77), 63056. 70 Lee G H, Kwon S J, Park K S, et al. Scientific Reports, 2014, 4, 6883. 71 Li D, Feng C, Liu H K, et al. Journal of Materials Chemistry A, 2015, 3(3), 978. 72 Fang S, Shen L, Nie P, et al. Particle & Particle Systems Characterization, 2014, 32(3), 364. 73 Xia L D, Zhu H R, Liu S Y, et al. Applications and Materials Science EPSS, 2023, 220(6), 708. 74 Wang B, Jin J, Rui K, et al. Journal of Power Sources, 2018, 396, 124. 75 Lin N, Li T, Han Y, et al. ACS Applied Materials & Interfaces, 2018, 10(10), 8399. 76 Wang J, Du N, Song Z, et al. Journal of Power Sources, 2013, 229, 185. 77 Chen C, Shuang-Ke L, Jing X U, et al. Chinese Journal of Power Sources, 2018, 42(5), 611. 78 Liu R, Luo F, Zeng L, et al. Journal of Colloid and Interface Science, 2021, 584, 372. 79 Li W, Li M, Yang Z, et al. Small, 2015, 11(23), 2762. 80 Kaewraung W, Hasin P. Journal of Energy Storage, 2024, 82, 110517. 81 Kim S W, Ngo D T, Heo J, et al. Electrochimica Acta, 2017, 238, 319. 82 Garcia A, Biswas S, McNulty D, et al. ACS Applied Energy Materials, 2022, 5(2), 1922. 83 Jo C, Wen B, Jeong H, et al. ACS Nano, 2023, 17(9), 8403. 84 Jin S, Li N, Cui H, et al. ACS Applied Materials & Interfaces, 2014, 6(21), 19397. 85 Qiang T, Fang J, Song Y, et al. RSC Advances, 2015, 5(22), 17070. 86 Li W, Yang Z, Cheng J, et al. Nanoscale, 2014, 6(9), 4532. 87 Sultana I, Rahman M M, Glushenkov A M, et al. Electrochimica Acta, 2021, 391, 391. 88 Ren J G, Wu Q H, Tang H, et al. Journal of Materials Chemistry A, 2013, 1(5), 1821. 89 Koo J H, Paek S M J N. Nanomaterials, 2021, 11(2), 319. 90 Wang B, Wen Z, Jin J, et al. Journal of Power Sources, 2017, 342(FEB. 28), 521. 91 Liu B, Abouimrane A, Balasubramanian M, et al. The Journal of Physical Chemistry C, 2014, 118(8), 3960. 92 Kim H, Son Y, Lee J, et al. Chemistry of Materials, 2016, 28(17), 6146. 93 Zhang N, Ouyang S, Li P, et al. Chemical Communications, 2011, 47(7), 2041. 94 Kennedy T, Brandon M, Ryan K M. Advanced Materials, 2016, 28(27), 5696. 95 Zhao X, Wang C, Wang D, et al. Electrochemistry Communications, 2013, 35, 116. 96 Cao X, Cao Y, Peng H, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(35), 11883. 97 Bodnarchuk M, Kravchyk K, Krumeich F, et al. ACS Nano, 2014, 8(3), 2360. 98 Doherty J, McNulty D, Biswas S, et al. Nanotechnology, 2020, 31(16), 1361. 99 Jin S, Wang C. Nano Energy, 2014, 7, 63. 100 Gao Y, Tang Y, Liu L, et al. Small, 2023, 19(49), 2304593. 101 Yang Z, Bai S, Yue H, et al. Materials Letters, 2014, 136, 107. 102 Song T, Cheng H, Choi H, et al. ACS Nano, 2012, (1), 303. 103 Li F K, Wang X Y, Xu X J, et al. Inorganic Chemicals Industry, 2022, 54(4), 88 (in Chinese). 李方坤, 王心怡, 许希军, 等. 无机盐工业, 2022, 54(4), 88.