Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040228-13    https://doi.org/10.11896/cldb.23040228
  无机非金属及其复合材料 |
钠离子电池生物质基硬碳负极材料的研究进展
唐晶晶1,*, 李晓滢1, 陈言蹊1, 周柳禧1, 文康2, 周其杰2, 陈松2, 杨娟1, 周向阳1,*
1 中南大学冶金与环境学院,长沙 410083
2 湖南宸宇富基新能源科技有限公司,长沙 410083
Research Progress of Biomass-based Hard Carbon Anode Materials for Sodium-Ion Batteries
TANG Jingjing1,*, LI Xiaoying1, CHEN Yanxi1, ZHOU Liuxi1, WEN Kang2, ZHOU Qijie2, CHEN Song2, YANG Juan1, ZHOU Xiangyang1,*
1 School of Metallurgy and Environment, Central South University, Changsha 410083, China
2 Chenyu-Fuji New Energy Technology Company Limited, Changsha 410083, China
下载:  全 文 ( PDF ) ( 47573KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有成本优势的钠离子电池被认为是锂离子电池的有益补充,而电极材料的性能是决定钠离子电池能否实现大规模应用的关键因素之一。负极材料方面,硬碳材料具有碳源易得、制备方法灵活、结构可调控性高等优点,极具商业化应用潜力。在硬碳材料的众多前驱体中,生物质因来源丰富、成本低廉等而备受青睐。但生物质基硬碳负极材料的孔结构及表面特性对其嵌脱钠性能影响较大。本文从生物质基硬碳负极的性能影响因素出发,总结了生物质衍生硬碳负极的研究进展,并进一步讨论了钠离子电池生物质基硬碳负极商业化过程面临的挑战和其未来研究方向,对钠离子电池硬碳负极材料的发展具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐晶晶
李晓滢
陈言蹊
周柳禧
文康
周其杰
陈松
杨娟
周向阳
关键词:  钠离子电池  硬碳负极  生物质  储钠性能    
Abstract: Sodium-ion batteries with cost advantages are considered a useful complement to lithium-ion batteries and the development of low-cost, high-performance electrode materials is the key to the commercialization of sodium-ion batteries. As for anode materials, with the advantages of easy availability of carbon source, easy preparation, and high structural adjustability, hard carbon has great potential of being commercialized. Among the many precursors of hard carbon materials, biomass is favored due to its abundant source and low cost. However, the pore structure and surface characteristics of biomass based hard carbon anode materials have a significant impact on their sodium insertion and extraction performance. In this paper, we summarize the research progress in recent years from the performance influencing factors of biomass-based hard carbon anode, and further discuss the challenges in the commercialization process of biomass-based hard carbon anode for sodium-ion batteries and its future research directions, hoping to provide useful guidelines for future research and commercialization.
Key words:  sodium-ion batteries    hard carbon anode materials    biomass    the performance of sodium storage
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TM911  
基金资助: 湖南省杰青项目(2023JJ10076)
通讯作者:  * 唐晶晶,中南大学冶金与环境学院副教授、博士研究生导师。2010年中南大学冶金科学与工程学院冶金工程专业本科毕业,2015年中南大学冶金与环境学院有色金属冶金专业博士毕业后到中国香港理工大学进行博士后研究工作,2017年到中南大学工作至今。主要研究领域为新能源材料与器件关键材料的研发、新能源战略资源高效回收等。以第一/通信作者身份在Adv Funct Mater、Nano Energy、J Mater Chem A、J Haz Mat、J Power Sources等国际知名刊物发表相关学术论文50余篇;主持并以项目骨干参与国家级、省部级及校企联合项目10余项;获授权发明专利30余项,多项专利实施专利权转多项专利实施专利权转让或技术入股成果转化;获中国有色金属工业科学技术奖(发明一等奖)1项、山西省专利奖一等奖1项。担任多个期刊青年编委及众多中外文期刊审稿人。tangjj@csu.edu.cn
周向阳,中南大学冶金与环境学院教授、博士研究生导师。2002年到中南大学工作至今。主要研究方向为材料冶金与电化学工程。以第一/通信作者在Nano Energy、Energy Environ Sci等国际知名刊物发表相关学术论文100余篇。主持国家级、省部级及校企联合项目50余项,获国家授权专利发明50余项,多项专利实施专利权转让或技术入股成果转化。以第一完成人获省部级科技进步一等奖1项、省部级科技发明二等奖3项。担任广元市先进复合材料产业发展研究院院长、国家重点研发计划项目评审专家。xyzhou@csu.edu.cn   
引用本文:    
唐晶晶, 李晓滢, 陈言蹊, 周柳禧, 文康, 周其杰, 陈松, 杨娟, 周向阳. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2024, 38(15): 23040228-13.
TANG Jingjing, LI Xiaoying, CHEN Yanxi, ZHOU Liuxi, WEN Kang, ZHOU Qijie, CHEN Song, YANG Juan, ZHOU Xiangyang. Research Progress of Biomass-based Hard Carbon Anode Materials for Sodium-Ion Batteries. Materials Reports, 2024, 38(15): 23040228-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040228  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040228
1 Xie M, Wu F, Huang Y X. Advanced technology and application of sodiu-mion batteries, Electronics Industry Press, China, 2020, pp.1 (in Chinese).
谢嫚, 吴锋, 黄永鑫. 钠离子电池先进技术及应用, 电子工业出版社, 2020, pp.1.
2 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058), 928.
3 Zhu Z X, Jiang T L, Mohsin Ali, et al. Chemical Reviews, 2022, 122(22), 16610.
4 Jacobson M Z. Energy & Environmental Science, 2009, 2(2), 148.
5 Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Chemical Reviews, 2011, 111(5), 3577.
6 Nayak P K, Yang L, Brehm W, et al. Angewandte Chemie International Edition, 2018, 57(1), 102.
7 Yabuuchi N, Kubota K, Dahbi M, et al. Chemical Reviews, 2014, 114(23), 11636.
8 Zhu Y Y, Wang Y H, Wang Y T, et al. Carbon Energy, 2022, 4(6), 1182.
9 Hou H, Qiu X, Wei W, et al. Advanced Energy Materials, 2017, 7(24), 1602898.
10 Hirsh H S, Li Y, Tan D, et al. Advanced Energy Materials, 2020, 10(32), 2001274.
11 Delmas C. Advanced Energy Materials, 2018, 8(17), 1703137.
12 Pu X, Wang H, Zhao D, et al. Small, 2019, 15(32), 1805427.
13 Ge P, Fouletier M. Solid State Ionics, 1988, 28-30(part 2), 1172.
14 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2001, 148(8), A803.
15 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4), 1271.
16 Perveen T, Siddiq M, Shahzad N, et al. Renewable and Sustainable Energy Reviews, 2020, 119, 109549.
17 Xia G H, Wang D, Li X B, et al. Materials Reports, 2021, 35(13), 13041(in Chinese).
夏广辉, 王丁, 李雪豹, 等. 材料导报, 2021, 35(13), 13041.
18 Xie F, Xu Z, Guo Z Y, et al. Progress in Energy, 2020, 2(4), 042002.
19 Zhang G, Liu X, Wang L, et al. Journal of Materials Chemistry A, 2022, 10, 9277.
20 Sun N, Guan Z R X, Liu Y W, et al. Advanced Energy Materials, 2019, 9(32), 1901351.
21 Dou X, Hasa I, Saurel D, et al. Materials Today, 2019, 3, 87.
22 Deng W T, Cao Y J, Yuan G M, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 47728.
23 Zhang T, Mao J, Liu X L, et al. RSC Advances, 2017, 7(66), 41504.
24 Li Y Q, Lu Y X, Meng Q S, et al. Advanced Energy Materials, 2019, 9, 1902852.
25 Li Y M, Hu Y S, Titirici M M, et al. Advanced Energy Materials, 2016, 6(18), 1600659.
26 Wang J, Yan L, Ren Q J, et al. Electrochimica Acta, 2018, 291, 188.
27 Wu F, Zhang M H, Bai Y, et al. ACS Applied Materials & Interfaces, 2019, 11(13), 12554.
28 Chen C, Huang Y, Zhu Y D, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(3), 1497.
29 Li Q, Zhang Y, Feng S, et al. International Journal of Energy Research, 2020, 45(5), 7082.
30 Saurel D, Orayech B, Xiao B, et al. Advanced Energy Materials, 2018, 8(17), 1703268.
31 Franklin R E. Proceedings of the Royal Society A, 1951, 209(1097), 196.
32 Chen X Y, Liu C Y, Fang Y J, et al. Carbon Energy, 2022, 4(6), 1133.
33 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4), 1271.
34 Komaba S, Murata W, Ishikawa T, et al. Advanced Functional Materials, 2011, 21(20), 3859.
35 Cao Y, Xiao L, Sushko M L, et al. Nano Letters, 2012, 12(7), 3783.
36 Ding J, Wang H, Li Z, et al. ACS Nano, 2013, 7(12), 11004.
37 Zhang B, Ghimbeu C M, Laberty C, et al. Advanced Energy Materials, 2016, 6(1), 1501588.
38 Bommier C, Surta T W, Dolgos M, et al. Nano Letters, 2015, 15(9), 5888.
39 Jin Y, Sun S, Ou M, et al. ACS Appllied Energy Materials, 2018, 1(5), 2295.
40 Chen X Y, Tian J Y, Li P, et al. Advanced Energy Materials, 2022, 12(24), 2200886.
41 Zhao J H, He X X, Lai W H, et al. Advanced Energy Materials, 2023, 13(18), 2300444.
42 Wang J, Yan L, Ren Q J, et al. Electrochimica Acta, 2018, 291, 188.
43 Rybarczyk M K, Li Y M, Qiao M, et al. Journal of Energy Chemistry, 2019, 29, 17.
44 Rath P C, Patra J, Huang H T, et al. ChemSusChem, 2019, 12(10), 2302.
45 Zhou S Y, Tang Z, Pan Z Y, et al. SusMat, 2022, 2(3), 357.
46 Wang J C, Zhao J H, He X X, et al. Sustainable Materials and Technologies, 2022, 33, e00446.
47 Gao Y P, Piao S Y, Jiang C H, et al. Diamond & Related Materials, 2022, 129, 109329.
48 Guo S, Chen Y M, Tong L P, et al. Electrochimica Acta, 2022, 410, 140017.
49 Hou Z D, Lei D, Jiang M W, et al. ACS Applied Materials & Interfaces, 2023, 15(1), 1367.
50 Xu T Y, Qiu X, Zhang X, et al. Chemical Engineering Journal, 2023, 452(4), 139514.
51 Gao Z, Zhang Y, Song N, et al. Materials Research Letters, 2016, 5(2), 69.
52 Joanna G, Cathie V G, Camelia M G. C-Journal of Carbon Research, 2016, 2(4), 24.
53 Thompson M, Xia Q B, Hu Z, et al. Materials Advances, 2021, 2, 5881.
54 Titirici M M, Thomas A, Yu S H, et al. Chemistry of Materials, 2007, 19(17), 4205.
55 Senthil C, Park J W, Shaji N, et al. Journal of Energy Chemistry, 2022, 64, 286.
56 Jin Y H, Shi Z Y, Han T, et al. Processes, 2023, 11(3), 764.
57 Rios C M S, Simonin L, Ghimbeu C M, et al. Fuel Processing Technology, 2022, 231, 107223.
58 Xiao L F, Lu H Y, Fang Y J, et al. Advanced Energy Materials, 2018, 8(20), 1703238.
59 Wang K, Jin Y, Sun S X, et al. ACS Omega, 2017, 2(4), 1687.
60 Beda A, Meins J M, Taberna P L, et al. Sustainable Materials and Technologies, 2020, 26, e00227.
61 Yang H P, Rong Y, Chen H P, et al. Fuel, 2007, 86(12-13), 1781.
62 Sharma H B, Sarmah A K, Dubey B. Renewable and Sustainable Energy Reviews, 2020, 123, 109761.
63 Titirici M M, White R J, Falco C, et al. Energy & Environmental Science, 2012, 5(5), 6796.
64 Lotfabad E M, Ding J, Cui K, et al. ACS Nano, 2014, 8(7), 7115.
65 Sun N, Liu H, Xu B. Journal of Materials Chemistry A, 2015, 3(41), 20560.
66 Xu Z Q, Chen J C, Wu M Q, et al. Electronic Materials Letters, 2019, 15, 428.
67 Cao Y, Xiao L, Sushko M L, et al. Nano Letters, 2012, 12(7), 3783.
68 Chen D Q, Zhang W, Luo K Y, et al. Energy & Environmental Science, 2021, 14(4), 2244.
[1] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[2] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[3] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[4] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[5] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[6] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[7] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[8] 赵春波, 赵嵘, 戚剑飞, 庄文博, 刘婕, 陈沛, 万艳芬, 杨鹏. 面向双碳目标的水淡技术:生物质碳用于界面太阳能光蒸汽转化技术的研究进展[J]. 材料导报, 2023, 37(12): 21110158-13.
[9] 曹茂炅, 王影娴, 刘志丹. 废弃生物质基生物原油制备可再生润滑油的潜力、途径和挑战[J]. 材料导报, 2023, 37(10): 22120087-10.
[10] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[11] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[12] 王秀超, 秦莹莹, 郭红革. 生物基可降解包装薄膜的研究进展[J]. 材料导报, 2022, 36(Z1): 21070279-8.
[13] 周晶晶, 周军, 吴雷, 杨茸茸, 宋永辉, 张秋利. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 20070237-8.
[14] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[15] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed