Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21110158-13    https://doi.org/10.11896/cldb.21110158
  无机非金属及其复合材料 |
面向双碳目标的水淡技术:生物质碳用于界面太阳能光蒸汽转化技术的研究进展
赵春波, 赵嵘, 戚剑飞, 庄文博, 刘婕, 陈沛, 万艳芬, 杨鹏*
云南大学材料与能源学院,昆明 650500
Utilizing Biochars in Interfacial Solar-Vapor Conversion and Seawater Desalination: Potential Value for ‘Double Carbon’ Goals and State of the Art
ZHAO Chunbo, ZHAO Rong, QI Jianfei, ZHUANG Wenbo, LIU Jie, CHEN Pei, WAN Yanfen, YANG Peng*
School of Materials and Energy, Yunnan University, Kunming 650500, China
下载:  全 文 ( PDF ) ( 16794KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 面向碳达峰、碳中和目标,针对当前人们所面临的淡水紧缺和能源危机,研究者们致力于寻找低碳、环保和可持续发展的解决途径。近年来,研究者们对利用 “绿色能源——太阳能”和“蓝色能源——海洋”以可持续生产淡水给予极大的关注,试图获得高的能源转化效率以解决淡水与清洁能源两大资源问题,并以此降低碳排放,为碳中和目标助力。界面太阳能光蒸汽转化技术是目前缓解淡水危机极有效的手段之一,凭借其高效的太阳能热利用、出色的光热转化率和高的水蒸发产量而备受关注。界面系统主要包括光吸收器和蒸发装置。其中,碳基光热材料是光吸收器的热门选材之一,尤其生物质碳具有绿色环保、价格低廉、可再生以及变废为宝等优点而颇受欢迎。本文系统地梳理并阐述了基于生物质碳的太阳能光蒸汽转化系统中的材料设计、系统设计、亲水设计、水传输通道设计和抗盐设计,简述了生物质碳的光热转化机理和光热系统的性能评估,最后从实际应用的角度总结了生物质碳在海水淡化和电能生产中的应用研究,并针对当前该领域所面临的挑战和机遇提出了未来几年内的研究热点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵春波
赵嵘
戚剑飞
庄文博
刘婕
陈沛
万艳芬
杨鹏
关键词:  双碳目标  生物质碳  界面太阳能光蒸汽转化  淡化  电能生产    
Abstract: Facing the freshwater shortage and energy crisis, in order to achieve the goal of carbon dioxide emissions peaking and achieve carbon neutrality, researchers are devoted to seeking low-carbon, environmental-friendly and sustainable solutions. Recently, the sustainable freshwater generating strategy attracted much attraction about combining ‘green solar energy’ and ‘blue ocean energy’. Various methods have been explored to improve the energy conversion efficiency in generating freshwater and clean energy. Thus, the interfacial solar-vapor conversion technology became popular due to its high thermal utilization, photothermal conversion and vapor production rate. Due to its reproducibility and low cost, biochar as a kind of carbon-based photothermal material is used so often as solar absorber in the above interfacial system. In this review, we discuss five critical factors emphatically-materials, systems, hydrophily, water transport channel and salt-rejection designs-which, if addressed systematically, could increase the performance of biochar photothermal conversion devices. Meanwhile, we illuminate briefly the mechanism of photothermal conversion and the performance evaluation of biochar. Finally, the hot topics and challenges are summarized in the practical applications of biochar on desalination and energy generation, which provides a roadmap for the future development of the interfacial solar-vapor conversion technology.
Key words:  ‘double carbon’ goals    biochar    interfacial solar-vapor conversion    desalination    electricity generation
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  P747.14  
基金资助: 国家自然科学基金(52071282);云南省应用基础研究计划重点项目(202001BB050046);云南省科技厅-云南大学双一流建设重点项目(2019FY003013);云南大学创新创业基金会(201804003;202004017;202004019;202004020;202104005)
通讯作者:  * 杨鹏,云南大学材料与能源学院副教授、硕士研究生导师。2001年西安电子科技大学光电子技术专业本科毕业,2004年西安电子科技大学材料物理与化学专业硕士毕业,2010年法国居里夫人大学(现更名为索邦大学)物理与分析化学专业博士毕业。目前主要从事基于贵金属的新型二维材料、新型二维材料的光电和能源应用等方面的研究工作。发表论文20余篇,包括Nano Energy、ACS Nano、Biomaterials、Nano Letters等。pyang@ynu.edu.cn   
作者简介:  赵春波,2019年6月毕业于中国地质大学(北京),获得工学学士学位。现为云南大学材料与能源学院硕士研究生,在杨鹏副教授、万艳芬副教授的指导下进行研究,目前主要研究领域为新能源纳米材料及其复合物在海水淡化方面的应用。
引用本文:    
赵春波, 赵嵘, 戚剑飞, 庄文博, 刘婕, 陈沛, 万艳芬, 杨鹏. 面向双碳目标的水淡技术:生物质碳用于界面太阳能光蒸汽转化技术的研究进展[J]. 材料导报, 2023, 37(12): 21110158-13.
ZHAO Chunbo, ZHAO Rong, QI Jianfei, ZHUANG Wenbo, LIU Jie, CHEN Pei, WAN Yanfen, YANG Peng. Utilizing Biochars in Interfacial Solar-Vapor Conversion and Seawater Desalination: Potential Value for ‘Double Carbon’ Goals and State of the Art. Materials Reports, 2023, 37(12): 21110158-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110158  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21110158
1 Kumar L, Hasanuzzaman M, Rahim N A. Energy Conversion and Management, 2019, 195, 885.
2 Liu B, Zhang X, Ji J. International Journal of Energy Research, 2021, 45(6), 8347.
3 Kabir E, Kumar P, Kumar S, et al. Renewable and Sustainable Energy Reviews, 2018, 82, 894.
4 Jian S, Tian Z, Hu J, et al. Advanced Powder Materials, DOI:10. 1016/j. apmate. 2021. 09. 004.
5 Zhao G, Ma W, Wang X, et al. Advanced Powder Materials, DOI: 10. 1016/j. apmate. 2021. 09. 008.
6 Siria A, Bocquet M L, Bocquet L. Nature Reviews Chemistry, 2017, 1(11), 91.
7 Liang N, Li P, Liu Z, et al. Processes, 2020, 8(6), 737.
8 Khan N, Kalair A, Abas N, et al. Renewable and Sustainable Energy Reviews, 2017, 72, 590.
9 Wang Z L, Jiang T, Xu L. Nano Energy, 2017, 39, 9.
10 Ghasemi H, Ni G, Marconnet A M, et al. Nature Communications, 2014, 5, 4449.
11 Elimelech M, Phillip W A. Science, 2011, 333(6043), 712.
12 Xiao T X, Liang X, Jiang T, et al. Advanced Functional Materials, 2018, 28(35), 1802634.
13 Khawaji A D, Kutubkhanah I K, Wie J M. Desalination, 2008, 221(1-3), 47.
14 Chen J, Feng J, Li Z, et al. Nano Letters, 2019, 19(1), 400.
15 Gao M, Peh C K, Phan H T, et al. Advanced Energy Materials, 2018, 8(25), 1800711.
16 Bai H, Liu N, Hao L, et al. Energy & Environmental Materials, DOI: 10. 1002/eem2. 12235.
17 Geng Y, Zhang K, Yang K, et al. Carbon, 2019, 155, 25.
18 Xiao P, He J, Ni F, et al. Nano Energy, 2020, 68, 104385.
19 Guo Z, Wang G, Ming X, et al. ACS Applied Materials & Interfaces, 2018, 10(29), 24583.
20 Ding D, Huang W, Song C, et al. Chemical Communications, 2017, 53(50), 6744.
21 Huang W, Hu G, Tian C, et al. Sustainable Energy & Fuels, 2019, 3(11), 3000.
22 Yang J, Chen Y, Jia X, et al. ACS Applied Materials & Interfaces, 2020, 12(41), 47029.
23 Zheng Z, Li H, Zhang X, et al. Nano Energy, 2020, 68, 104298.
24 Geng X, Zhang D, Zheng Z, et al. Nano Energy, 2021, 82, 105700.
25 Shao Y, Tang J, Li N, et al. EcoMat, 2020, 2(1), e12018.
26 Zhou J, Sun Z, Chen M, et al. Advanced Functional Materials, 2016, 26(29), 5368.
27 Neumann O, Feronti C, Neumann A D, et al. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29), 11677.
28 Park S H, Park J H, Kim J, et al. Desalination, 2021, 500, 114900.
29 Wu D, Liang J, Zhang D, et al. Solar Energy Materials and Solar Cells, 2020, 215, 110591.
30 Zhou Y, Ding T, Gao M, et al. Nano Energy, 2020, 77, 105102.
31 Li N, Qiao L, He J, et al. Advanced Functional Materials, 2020, 31(7), 2008681.
32 Yang T, Lin H, Lin K T, et al. Sustainable Materials and Technologies, 2020, 25, e00182.
33 Yang X, Yang Y, Fu L, et al. Advanced Functional Materials, 2018, 28(3), 1704505.
34 Li X, Zhu B, Zhu J. Carbon, 2019, 146, 320.
35 Li Y, Gao T, Yang Z, et al. Nano Energy, 2017, 41, 201.
36 Wang G, Fu Y, Guo A K, et al. Chemistry of Materials, 2017, 29(13), 5629.
37 Wang Q. Influence of biomass feedstocks and production temperatures on the structure-activities of biochar. Master’s Thesis, Shanghai Jiao Tong University, China, 2014 (in Chinese).
王群. 生物质源和制备温度对生物炭构效的影响. 硕士学位论文, 上海交通大学, 2014.
38 Bi Z, Kong Q, Cao Y, et al. Journal of Materials Chemistry A, 2019, 7(27), 16028.
39 Liu W J, Jiang H, Yu H Q. Energy & Environmental Science, 2019, 12(6), 1751.
40 Wu Y, Kong R, Ma C, et al. Energy & Environmental Materials, DOI: 10. 1002/eem2. 1225.
41 Gong B, Yang H, Wu S, et al. Carbon, 2021, 171, 359.
42 Fowles M. Biomass and Bioenergy, 2007, 31(6), 426.
43 Trakal L, Komárek M, Száková J, et al. Plant, Soil and Environment, 2011, 57(8), 372.
44 Manya J J. Environmental Science & Technology, 2012, 46(15), 7939.
45 Zhu G, Ma L, Lv H, et al. Nanoscale, 2017, 9(3), 1237.
46 Sun Y, Webley P A. Chemical Engineering Journal, 2010, 162(3), 883.
47 Guo C, Liao W, Li Z, et al. Carbon, 2015, 85, 279.
48 Li Y, Li C, Qi H, et al. RSC Advances, 2018, 8(23), 12666.
49 Yu F, Li S, Chen W, et al. Energy & Environmental Materials, 2019, 2(1), 55.
50 Boriskina S V, Raza A, Zhang T, et al. MRS Bulletin, 2019, 44(1), 59.
51 Chen Y C, Sha C C, Wang X Y, et al. Energy Research & Utilization, 2019(4), 23 (in Chinese).
陈宇超, 沙畅畅, 王心妤, 等. 能源研究与利用, 2019(4), 23.
52 Wang X, He Y, Cheng G, et al. Energy Conversion and Management, 2016, 130, 176.
53 Chen C, Li Y, Song J, et al. Advanced Materials, 2017, 29(30), 1701756.
54 Ito Y, Tanabe Y, Han J, et al. Advanced Materials, 2015, 27(29), 4302.
55 Ni G, Miljkovic N, Ghasemi H, et al. Nano Energy, 2015, 17, 290.
56 Zhu L L, Gao M M, Peh C K N, et al. Advanced Energy Materials, 2018, 8(16), 1702149.
57 Storer D P, Phelps J L, Wu X, et al. ACS Applied Materials & Interfaces, 2020, 12(13), 15279.
58 Han X, Wang W, Zuo K, et al. Nano Energy, 2019, 60, 567.
59 Zhou J, Gu Y, Liu P, et al. Advanced Functional Materials, 2019, 29(50), 1903255.
60 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841.
61 Zhu L, Gao M, Peh C K N, et al. Nano Energy, 2019, 57, 507.
62 Li X, Ni G, Cooper T, et al. Joule, 2019, 3(8), 1798.
63 Liang J, Liu H, Yu J, et al. Nanophotonics, 2019, 8(5), 771.
64 Fang J, Liu J, Gu J J, et al. Chemistry of Materials, 2018, 30(18), 6217.
65 Tian Y, Yang H, Wu S, et al. Nano Energy, 2019, 66, 104125.
66 Lu Y, Wang X, Fan D, et al. Sustainable Materials and Technologies, 2020, 25, e00180.
67 Li Z, Wang C, Lei T, et al. Advanced Sustainable Systems, 2019, 3(4), 1800144.
68 Liu J, Yao J, Yuan Y, et al. Advanced Sustainable Systems, 2020, 4(9), 2000126.
69 Zhu M, Yu J, Ma C, et al. Solar Energy Materials and Solar Cells, 2019, 191, 83.
70 Liu J, Liu Q, Ma D, et al. Journal of Materials Chemistry A, 2019, 7(15), 9034.
71 Zhang H, Li L, Jiang B, et al. ACS Applied Materials & Interfaces, 2020, 12(14), 16503.
72 Sun P, Zhang W, Zada I, et al. ACS Applied Materials & Interfaces, 2020, 12(2), 2171.
73 Bian Y, Shen Y, Tang K, et al. Global Challenges, 2019, 3(10), 1900040.
74 Li J, Zhou X, Chen G, et al. Solar Energy Materials and Solar Cells, 2021, 222, 110941.
75 Zhang S, Zang L, Dou T, et al. ACS Omega, 2020, 5(6), 2878.
76 Jiang H, Geng X, Li S, et al. Journal of Materials Science & Technology, 2020, 59, 180.
77 Chao W, Li Y, Sun X, et al. Chemical Engineering Journal, 2021, 405, 126703.
78 Chen X, Wu Z, Lai D, et al. Journal of Materials Chemistry A, 2020, 8(43), 22645.
79 Zhang Q, Ren L, Xiao X, et al. Carbon, 2020, 156, 225.
80 Wilson H M, Rahman A R S, Parab A E, et al. Desalination, 2019, 456, 85.
81 Guo M X, Wu J B, Li F H, et al. New Carbon Materials, 2020, 35(4), 436.
82 Yu F, Guo Z, Xu Y, et al. ACS Applied Materials & Interfaces, 2020, 12(51), 57155.
83 Indriyati, Primadona I, Permatasari F A, et al. Nanoscale, 2021, 13(16), 7523.
84 Zhou J, Sheng Z, Han H, et al. Materials Letters, 2012, 66(1), 222.
85 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29(28), 1606762.
86 Zhang Q, Li L, Jiang B, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28179.
87 Chao W, Sun X, Li Y, et al. ACS Applied Materials & Interfaces, 2020, 12(19), 22387.
88 Liu N, Hao L, Zhang B, et al. Energy & Environmental Materials, DOI: 10. 1002/eem2. 12199.
89 Hu N, Xu Y, Liu Z, et al. Carbohydrate Polymers, 2020, 243, 116480.
90 Guo Y, Lu H, Zhao F, et al. Advanced Materials, 2020, 32(11), 1907061.
91 Guo A, Fu Y, Wang G, et al. RSC Advances, 2017, 7(8), 4815.
92 Ishii S, Sugavaneshwar R P, Nagao T. The Journal of Physical Chemistry C, 2016, 120(4), 2343.
93 Wilson H M, Ahirrao D J, Raheman Ar S, et al. Solar Energy Materials and Solar Cells, 2020, 215, 110604.
94 Li X, Lin R, Ni G, et al. National Science Review, 2018, 5(1), 70.
95 Xu J, Wang Z, Chang C, et al. Desalination, 2020, 484, 114423.
96 Gao S, Dong X, Huang J, et al. Global Challenges, 2019, 3(8), 1702149.
97 Kuang Y, Chen C, He S, et al. Advanced Materials, 2019, 31(23), 1900498.
98 Wu S, Xiong G, Yang H, et al. Advanced Energy Materials, 2019, 9(30), 1901286.
99 Yao H, Zhang P, Yang C, et al. Energy & Environmental Science, 2021, 14(10), 5330.
100 Xu N, Zhu P, Sheng Y, et al. Joule, 2020, 4(2), 347.
101 Li X, Min X, Li J, et al. Joule, 2018, 2(11), 2477.
[1] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[2] 曹宗仑, 孙杰, 练越, 张淮浩. 无碱活化的生物质衍生碳:一种适应于多种金属离子的电容脱盐电极材料[J]. 材料导报, 2022, 36(24): 21110062-6.
[3] 李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. 碳材料/甲壳素复合水凝胶高效太阳能海水淡化[J]. 材料导报, 2022, 36(12): 21030098-6.
[4] 胡耀强, 房得珍, 叶秀深, 张慧芳, 刘海宁, 吴志坚. 西瓜皮基生物质碳气凝胶的制备及对染料的吸附[J]. 材料导报, 2021, 35(11): 11007-11012.
[5] 杨德龙, 季旭, 陈颖, 王聪, 韩景阳, 徐海洋, 廖超. 纳米材料在太阳能蒸馏中的应用研究进展[J]. 材料导报, 2020, 34(21): 21115-21124.
[6] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[7] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed