Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21110062-6    https://doi.org/10.11896/cldb.21110062
  无机非金属及其复合材料 |
无碱活化的生物质衍生碳:一种适应于多种金属离子的电容脱盐电极材料
曹宗仑1, 孙杰1, 练越2, 张淮浩2,*
1 中国石油化工股份有限公司北京化工研究院,北京 100013
2 扬州大学化学化工学院,江苏 扬州 225002
Biomass-derived Carbon Without Alkali Activation: an Efficient Functional Capacitive Desalination Material for Various Metal Ions
CAO Zonglun1, SUN Jie1, LIAN Yue2, ZHANG Huaihao2,*
1 SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
2 School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
下载:  全 文 ( PDF ) ( 22317KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电容脱盐是一项绿色环保、低成本、低能耗的新技术,其中,研发高性能的电极材料是该技术的关键所在。本工作以低成本的生物质为原料,采用无需强碱或熔融盐等活化剂的绿色方法制备了介孔生物质衍生碳(NC),制备过程使用的化学试剂均可回收并能再次使用,符合当下绿色发展的理念。将制得的衍生碳作为电极材料应用于电容脱盐领域,研究结果表明,生物质衍生碳中丰富的杂原子缺陷和表面官能团赋予其优异的亲水性和赝电容特性。高通透介孔结构的生物质衍生碳不仅能够有效脱除盐水中的NaCl(在1.2 V的电压下,NC对NaCl的吸附量可以达到49.3 mg·g-1),而且对Cr3+、Co2+等金属盐离子也有很好的脱除效果(在20 min内可脱除78.8%盐离子)。本研究可为电容脱盐领域电极碳材料的制备提供一种绿色和谐的方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹宗仑
孙杰
练越
张淮浩
关键词:  生物质碳  电容脱盐  无碱活化  介孔    
Abstract: As a new and green technology, capacitance desalination has the advantage of low cost and energy consumption. Thereinto, the selection of electrode material is key to this technology. In this work, a low-cost biomass-derived carbon (NC), as the electrode material with excellent desalination efficiency, can construct high permeability mesoporous structure without conventional alkali or molten salt activator usage. All the chemical reagents used in preparation process can be recycled and reused, which is in line with the current theme of green development. Meanwhile, the abundant heteroatomic defects and surface functional groups in biomass-derived carbon afford good hydrophilic and pseudocapacitive properties. A capacitive desalting device, assembled by NC as electrode material, can effectively remove NaCl in brine (Under the voltage of 1.2 V, the adsorption capacity of NaCl could reach 49.3 mg·g-1), and metal salts as well, such as Cr3+, Co2+( 78.8% salt ions can be desalted in 20 minutes).
Key words:  biomass carbon    capacitive desalination    non-alkali activation    mesoporous
发布日期:  2023-01-03
ZTFLH:  TB34  
基金资助: 国家重点研发计划项目(2021YFC2102205);中石化重点项目(321018)
通讯作者:  huaihaozhang@163.com   
作者简介:  曹宗仑,高级工程师,就职于北京化工研究院环境保护研究所。1998年获得本科学士学位(中国石油大学华东),2008年获得博士学位(中国石油大学(北京))。主要从事水污染治理技术开发和应用工作。已发表中英文文章10余篇,获授权专利10余项。
张淮浩,教授,博士研究生导师,现任职于扬州大学化学化工学院。1998年获得本科学士学位(中国石油大学华东),2006年获得博士学位(中国石油大学(北京))。主要研究方向为化工分离、电化学储能。已发表SCI文章50余篇,获授权专利10余项。
引用本文:    
曹宗仑, 孙杰, 练越, 张淮浩. 无碱活化的生物质衍生碳:一种适应于多种金属离子的电容脱盐电极材料[J]. 材料导报, 2022, 36(24): 21110062-6.
CAO Zonglun, SUN Jie, LIAN Yue, ZHANG Huaihao. Biomass-derived Carbon Without Alkali Activation: an Efficient Functional Capacitive Desalination Material for Various Metal Ions. Materials Reports, 2022, 36(24): 21110062-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110062  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21110062
1 Zhang P, Li J, Chan-Park B. ACS Sustainable Chemistry & Engineering, 2020, 8, 9291.
2 Omosebi A, Gao X, Landon J, et al. ACS Applied Materials & Interfaces, 2014, 6, 12640.
3 Tsouris C, Mayes R, Kiggans J, et al. Environmental Science & Technology, 2011, 45, 10243.
4 Chen Z, Zhang H, Wu C, et al. Desalination, 2018, 433, 68.
5 Wang L, Dykstra J, Lin S. Environmental Science & Technology, 2019, 53, 3366.
6 Lee J, Jo K, Lee J, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 10815.
7 Li M, Park H. ACS Applied Materials & Interfaces, 2018, 10, 2442.
8 Biesheuvel M, Van-Limpt B, Wal A. The Journal of Physical Chemistry C, 2009, 113, 5636.
9 Jung Y, Yang Y, Kim T, et al. ACS Applied Materials & Interfaces, 2018, 10, 6207.
10 Dixit M, Moreno D, Xiao X, et al. ACS Materials Letters, 2019, 1, 71.
11 Porada S, Weinstein L, Dash R, et al. ACS Applied Materials & Interfaces, 2012, 4, 1194.
12 Li H, Zou L, Pan L, et al. Environmental Science & Technology, 2010, 44, 8692.
13 Xu Z, Li Y, Li D, et al. Applied Surface Science, 2018, 444, 661.
14 Jin H, Li J, Yuan Y, et al. Advanced Energy Materials, 2018, 8, 1.
15 Zheng Y, Lian Y, Wang D, et al. Vacuum, 2020, 181, 109746.
16 Ban C L , Xu Z, Wang D, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 10742.
17 Zhang Z, Jia B, Liu L, et al. ACS Nano, 2019, 13, 11363.
18 Zhao J R, Hu J, Li J F, et al. Materials Letters, 2020, 261, 127146.
19 Zhang J, Fang J, Han J, et al. Journal of Materials Chemistry A, 2018, 6, 15245.
20 Zhao C, Zhang S, Sun N, et al. Environmental Science-Water Research & Technology, 2019, 5, 1054.
21 Zhang R, Gu X, Liu Y, et al. Applied Surface Science, 2020, 512, 145740.
22 Chao L, Liu Z, Zhang G, et al. Journal of Materials Chemistry A, 2015, 3, 12730.
23 Sun N, Li Z, Zhang X, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 8735.
24 Feng C, Chen Y, Yu C, et al. Chemosphere, 2018, 208, 285.
25 Yao X J, Cai Y G, Guo M Y, et al. Micronanoelectronic Technology, 2020, 57(4), 270(in chinese)
姚雪娇, 蔡亚果, 郭梦月, 等. 微纳电子技术, 2020, 57(4), 270.
26 Zhu G P, Liu Z N, Liu Q Z, et al. Materials Reports A: Research Papers, 2011, 25(7), 44(in Chinese)
朱光平, 刘忠良, 刘亲壮, 等. 材料导报:研究篇, 2011, 25(7), 44.
[1] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[2] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[3] 张卓然, 李钒, 侯敏, 张媛媛, 丁晟, 魏晓慧, 林松. 介孔硅止血材料的研究现状及应用前景[J]. 材料导报, 2022, 36(23): 21010168-9.
[4] 张文君, 吕江维, 陈威, 王鹏光. 功能化SBA-15介孔二氧化硅的制备及在药物递送系统中的应用进展[J]. 材料导报, 2022, 36(18): 20080069-11.
[5] 李东, 吴发超, 李瑞, 高彩云. 表面活性剂模板法构筑有序介孔三氧化钨及其光电化学水氧化性能[J]. 材料导报, 2022, 36(13): 21040241-6.
[6] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[7] 张意丽, 汤旭涛, 李坚烨, 王府权, 唐康, 胡金星, 方振兴, 严洁峰, 王卫. 冷冻干燥辅助法制备具有增强储锂性能的介孔NiMoO4纳米簇[J]. 材料导报, 2021, 35(24): 24011-24017.
[8] 薛沙, 赵蕾, 赵友全, 徐慧敏, 邓橙, 王尹, 蔡田雨, 朱孟府. 有序介孔碳负载纳米金属颗粒及其SERS性能研究[J]. 材料导报, 2021, 35(18): 18001-18006.
[9] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[10] 胡耀强, 房得珍, 叶秀深, 张慧芳, 刘海宁, 吴志坚. 西瓜皮基生物质碳气凝胶的制备及对染料的吸附[J]. 材料导报, 2021, 35(11): 11007-11012.
[11] 张理元, 尤佳, 钟雅洁, 董志红, 韩炎霖, 孙绪兵, 由耀辉1,2,. CTAB对无机沉淀-胶溶法制备介孔层状TiO2结构与性能的影响[J]. 材料导报, 2020, 34(24): 24014-24018.
[12] 蔡广, 李琳, 汪荣, 陈艳秋, 陈茂龙, 程云辉, 丁利, 许宙. 磁性介孔碳的粒径可控制备及弛豫性能[J]. 材料导报, 2020, 34(22): 22020-22023.
[13] 庄瑞杰, 于庆君, 唐晓龙, 易红宏, 黄永海, 张媛媛, 冯勇超. 介孔硅基分子筛吸附去除挥发性有机化合物的研究进展[J]. 材料导报, 2020, 34(15): 15013-15020.
[14] 崔帅, 呼世磊, 吕东风, 崔燚, 魏颖娜, 魏恒勇, 卜景龙, 陈越军. 介孔氮化铌粉体的制备及电化学性能[J]. 材料导报, 2020, 34(14): 14009-14015.
[15] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed