Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15013-15020    https://doi.org/10.11896/cldb.19070005
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
介孔硅基分子筛吸附去除挥发性有机化合物的研究进展
庄瑞杰1, 于庆君1,2, 唐晓龙1,2, 易红宏1,2, 黄永海1, 张媛媛1, 冯勇超1
1 北京科技大学能源与环境工程学院,北京 100083
2 工业典型污染物资源化处理北京市重点实验室,北京 100083
Review on Study of Mesoporous Silicon-based Molecular Sieve in the Field of VOCs Adsorption
ZHUANG Ruijie1, YU Qingjun1,2, TANG Xiaolong1,2, YI Honghong1,2, HUANG Yonghai1, ZHANG Yuanyuan1, FENG Yongchao1
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
下载:  全 文 ( PDF ) ( 4565KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 挥发性有机化合物(VOCs)的排放对生态环境和人体健康产生严重危害。作为VOCs处理的常用方法之一,吸附法因具有成本低、效率高且可回收和再利用等特点而受到广泛关注。介孔硅基分子筛具有高度有序的孔道结构、较大的比表面积和孔容以及孔道表面易于修饰等特点,十分适合作为VOCs的吸附材料,近年来引起研究者们的广泛关注。
介孔分子筛中作为VOCs吸附剂的主要为M41S、SBA和HMS等硅基材料,研究表明,介孔硅基分子筛的吸附性能不仅与材料的孔道结构有关,还受分子筛的宏观形貌特征等因素的影响。对介孔分子筛进行引入微孔的结构改进,合成微-介复合结构材料,既能够提升吸附过程的扩散作用,又解决了分子筛孔结构单一的问题,能够达到提升材料吸附性能的同时增强其水热稳定性的目的。此外,就同一种分子筛的宏观形貌而言,其孔道结构越长,越有利于VOCs分子的扩散与吸附。
然而,实际工业活动中的VOCs气体中往往会携带水分,由于纯介孔硅分子筛具有亲水性的特点,制约了其广泛应用。因此,近年来除探究介孔硅基分子筛的结构和形貌对VOCs吸附能力的影响外,研究者们主要对分子筛表面环境进行深入研究,通过接枝法和共缩合法等改性方式提升分子筛在潮湿条件下的吸附性能,并取得了长足的进展。
本文归纳了近年来介孔硅基分子筛吸附脱除VOCs的研究成果与进展,分别对分子筛结构、形貌和表面环境等影响吸附性能的因素进行介绍,总结了吸附VOCs能力较强的介孔分子筛的特性,指出了吸附VOCs过程的局限性,重点讨论了疏水改性对分子筛吸附能力的提升,并对未来的研究工作进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄瑞杰
于庆君
唐晓龙
易红宏
黄永海
张媛媛
冯勇超
关键词:  介孔硅基分子筛  挥发性有机物  吸附  疏水性    
Abstract: Volatile organic compounds (VOCs) emissions generate severe hazards to the natural environment and human health. As one of the common methods for VOCs treatment, adsorption has drawn extensive concern with its preponderance of low cost, high efficiency, recyclability and reusability. Meanwhile, mesoporous molecular sieves are considered as good candidates for adsorption material due to their distinguished characteristics of highly ordered pore structure, large specific surface area and pore volume as well as ease of functionalization, which has triggered the recent interest of researchers.
Some studies show that as common VOCs adsorbents, M41S, SBA, HMS and other silicon-based materials have excellent adsorption properties. The adsorption performance of mesoporous silicon-based molecular sieves is not only related to the pore structure of materials, but also affected by the macroscopic morphology characteristics of molecular sieves and other factors. For example, the structure improvement of mesoporous molecular sieve by introducing micropores to synthesize micro-mesoporous composite structural materials can not only improve the diffusion effect of adsorption process, but also solve the problem of single structure of molecular sieve pores, which can improve the adsorption performance of materials and enhance their hydrothermal stability. In addition, in terms of the macroscopic morphology of the same molecular sieve, the longer the pore structure is, the more conducive it is to the diffusion and adsorption of VOCs molecules.
On the other hand, water vapor is often contained in VOCs gases in practical industrial activities. Due to its hydrophilic properties, mesoporous silicon molecular sieves have limited in industrial applications. Therefore, in recent years, in addition to researching on the relationship between mesoporous silica molecular sieve absorption ability of VOCs and the structure and morphology of them, the researchers conduct the thorough research on the main environment on the surface of molecular sieves. By the method of grafting and co-condensation and other modified way of molecular sieve, researchers managed to enhance their adsorption performance in wet conditions.
In this paper, recent accomplishments and advances of the adsorption studies on meso-porous molecular sieve used for VOCs removal have been summarized in detail. In the meantime,the influence factors of molecular sieve structure, morphology and surface environment on adsorption performance are introduced, the characteristics of mesoporous molecular sieve with excellent adsorption VOCs capability are summarized, the limitations of adsorption VOCs process are pointed out.Moreover, improvement of adsorption capacity by hydrophobic modification was discussed and the future research work is prospected.
Key words:  mesoporous molecular sieve    volatile organic compounds    adsorption    hydrophobicity
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  X51  
基金资助: 中央高校基本科研业务费专项资金(FRF-TP-18-011A3);北京市科技计划项目(Z181100005418008)
通讯作者:  txiaolong@126.com   
作者简介:  庄瑞杰,2018年6月毕业于北京科技大学,获得本科学位。现为北京科技大学能源与环境工程学院研究生,在唐晓龙教授的指导下进行研究。目前主要研究领域为硅基有序介孔材料去除VOCs。
唐晓龙,教授/博士研究生导师,教育部新世纪优秀人才。现任北京科技大学能源与环境工程学院副院长,“大气污染控制与资源化”学术梯队负责人。同时兼任中国工程教育认证协会环境类分委会委员、中国有色金属学会环境保护学术委员会委员等。于2006年北京理工大学(清华联合培养)获博士学位,长期以来主要从事烟气脱硫脱硝技术、工业废气资源化、环境功能材料研究与开发等工作。近来年先后主持了国家自然科学基金、国家863计划重点项目子课题、北京市科委“首都蓝天行动”专项课题、教育部博士点基金等10余项研究工作。在国内外学术刊物上发表学术论文240余篇,其中SCI检索91篇;出版专著1部,参编论著3部;申请发明专利50余项,已授权22项;荣获省部级科技奖5项,2013年教育部新世纪优秀人才、2015年北京科技大学五四奖章等荣誉奖项。
引用本文:    
庄瑞杰, 于庆君, 唐晓龙, 易红宏, 黄永海, 张媛媛, 冯勇超. 介孔硅基分子筛吸附去除挥发性有机化合物的研究进展[J]. 材料导报, 2020, 34(15): 15013-15020.
ZHUANG Ruijie, YU Qingjun, TANG Xiaolong, YI Honghong, HUANG Yonghai, ZHANG Yuanyuan, FENG Yongchao. Review on Study of Mesoporous Silicon-based Molecular Sieve in the Field of VOCs Adsorption. Materials Reports, 2020, 34(15): 15013-15020.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070005  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15013
1 Lv S C, Ge Y L, Zhao Q, et al.Environmental Chemistry, 2017, 36(7), 1492(in Chinese).吕双春,葛云丽,赵倩,等. 环境化学, 2017, 36(7), 1492.2 Xiong Z H, Qian F, Su R R.Environmental Science and Technology, 2013, 36(S2), 222(in Chinese).熊振华,钱枫,苏荣荣. 环境科学与技术, 2013, 36(S2), 222.3 Zhang X D, Wang Y, Yang Y Q, et al.Journal of Physical Chemistry, 2015, 31(9), 1633(in Chinese).张晓东,王吟,杨一琼,等. 物理化学学报, 2015, 31(9), 1633.4 Hu Q, Li J, Qiao S, et al. Journal of Hazardous Materials, 2009, 164(2-3), 1205.5 Qu M L. Environmental Science and Management, 2012, 37(6), 102(in Chinese).曲茉莉. 环境科学与管理, 2012, 37(6), 102.6 Lu X C, Jiang J C.Biomass Chemical Engineering, 2009, 3(1), 45(in Chinese).卢辛成,蒋剑春.生物质化学工程, 2009, 3(1), 45.7 Zhang X, Gao B, Creamer A E, et al. Journal of Hazardous Materials, 2017, 338, 102.8 Zhao X S, Ma Q, Lu G Q. Energy & Fuels, 1998, 12(6), 1051.9 Lee J W, Shim W G, Moon H. Microporous and Mesoporous Materials, 2004, 73(3), 109.10 Makowski W, Kus'trowski P. Microporous and Mesoporous Materials, 2007, 102(1-3), 283.11 Li L, Song J, Yao X, et al. Journal of Central South University, 2012, 19(12), 3530.12 Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Adsorption, 2011, 17(3), 473.13 Hu Q, Dou B J, Tian H, et al. Microporous and Mesoporous Materials, 2010, 129(1-2), 30.14 Zhang W, Qu Z, Li X, et al. Journal of Environmental Sciences, 2012, 24(3), 520.15 Hung C, Bai H, Karthik M. Separation and Purification Technology, 2009, 64(3), 265.16 Rong W J. Study on adsorption and desorption of ketone waste gas on molecular sieve and resin. Master's Thesis, ZheJiang University of Technology, China, 2014(in Chinese).戎文娟. 酮类有机废气在分子筛和树脂上吸附—脱附性能研究.硕士学位论文,浙江工业大学, 2014.17 Huang H F, Chu X, Lu H F, et al. Journal of Chemical Engineering, 2011, 25(2), 219(in Chinese).黄海凤,褚翔,卢晗锋,等. 高校化学工程学报,2011, 25(2), 219.18 Nien K C, Chang F T, Chang M B. Journal of the Air & Waste Management Association, 2017, 67(12), 1319.19 Manjare S D, Ghoshal A K. Industrial & Engineering Chemistry Research, 2006, 45(19), 6563.20 Sui H, Liu J, He L, et al. Chemical Engineering Science, 2019, 197, 185.21 Li G J. The preparation and modification study of mesoporous MCM-48 molecular sieve and membrane. Master's Thesis,Dalian University of Technology, China, 2017(in Chinese).李桂杰. 介孔MCM-48分子筛及膜的制备与改性研究.硕士学位论文,大连理工大学, 2017.22 Leonowicz M E, Roth W J, Kresge C T, et al. Nature, 1992, 359(6397), 710.23 Zhao D, Feng J, Huo Q, et al. Science, 1998, 279(5350), 548.24 Sun H P. Study on preparation and catalytic oxidation desulfurization performance of mesoporous molecular sieve modified by metals. Master's Thesis, Northeast Petroleum University, China, 2017(in Chinese).孙洪平.金属改性介孔分子筛的制备及其催化氧化脱硫研究.硕士学位论文,东北石油大学, 2017.25 Beck J S, Vartuli J C, Roth W J, et al. Journal of the American Chemical Society, 1992, 114(27), 10834.26 Jiang T S. Studies on synthesis, characterization and catalytic properties of highly stable mesoporous molecular sieves. Ph.D. Thesis, Nanjing University of Science and Technology, China, 2005(in Chinese).姜廷顺. 高稳定性介孔分子筛的合成、表征与催化性能的研究.博士学位论文,南京理工大学, 2005.27 Wang H L. Synthesis and characterization of MCM-41 mesoporous molecular sieves. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2012(in Chinese).王欢龙. MCM-41分子筛的合成及性能的研究.硕士学位论文,内蒙古科技大学, 2012.28 Dai J Q. Synthesis of meso-microporous molecular sieves and their performance of VOCs adsorption.Master's Thesis, South China University of Technology, China, 2017(in Chinese).戴际强. 介微双孔沸石分子筛的合成及其VOCs吸附性能研究.硕士学位论文,华南理工大学, 2017.29 Ryoo R, Kim J M, Ko C H, et al.The Journal of Physical Chemistry, 1996, 100(45), 17718.30 Janus R, Wądrzyk M, Natkański P, et al.Journal of Industrial and Engineering Chemistry, 2019, 71, 465.31 Meng X, Lu D, Tatsumi T.Microporous and Mesoporous Materials, 2007, 105(1-2), 15.32 Qiao N, He C, Zhang X, et al.Journal of Porous Materials, 2018,26(1), 59.33 Zhang W W, Qu Z, Li X Y, et al. Journal of Environmental Sciences, 2012, 24(3), 520.34 Kim S, Ida J, Guliants V V, et al. The Journal of Physical Chemistry B, 2005, 109(13), 6287.35 Luo C. Synthesis, characterizations, structural analysis and catalytic pro-perties of IEZ-MCM-50. Master's Thesis, East China Normal University, 2013(in Chinese).罗琛. 从高结晶度MCM-50构建新型拓扑结构的微孔沸石分子筛及结构解析.硕士学位论文,华东师范大学, 2013.36 Huang T H,Zhao Y J, Tian Z F, et al. Journal of Physical Chemistry, 2014, 30(12), 2307(in Chinese).黄天辉,赵玉娟,田兆福,等.物理化学学报, 2014, 30(12), 2307.37 Wang H, Rong X, Han L, et al. RSC Advances, 2015, 5(8), 5695.38 Huang H F, Chu X, Lu H F, et al.China Environmental Science, 2010, 30(4), 442(in Chinese).黄海凤,褚翔,卢晗锋,等. 中国环境科学, 2010, 30(4), 442.39 Zhou Z H. Research on synthesis of MCM-48/ZSM-5 composite molecular sieve and membrane. Master's Thesis, Dalian University of Technology, China, 2009(in Chinese).周志华. MCM-48/ZSM-5复合分子筛及膜的制备研究.硕士学位论文,大连理工大学,2009.40 Xie Z Y,Xie Q, Li J P,et al. Environmental Chemistry, 2010, 29(6), 1048(in Chinese).谢遵园,谢倩,李军平,等.环境化学, 2010, 29(6), 1048.41 Yan X, Liu F, Gao Y, et al.Petroleum Journal (Petroleum Processing), 2016, 32(6), 1090(in Chinese).闫茜,刘芳,高雅,等.石油学报(石油加工), 2016, 32(6), 1090.42 Liao Y R.Synthesis of hierarchical zeolites and their performance of to-luene adsorption and desorption. Master's Thesis, Zhejiang University, China, 2018(in Chinese).廖苑如. 多级孔分子筛的制备及其对甲苯吸—脱附性能的研究.硕士学位论文,浙江大学, 2018.43 Qin Y, Wang H, Wang Y, et al. Procedia Environmental Sciences, 2013, 18, 366.44 Kubo S, Kosuge K. Langmuir, 2007, 23(23), 11761.45 Kosuge K, Kubo S, Kikukawa N, et al. Langmuir, 2007, 23(6), 3095.46 Jin W Y, Wang Y J, Wang X L,et al. Industrial Catalysis, 2009, 17(11), 12(in Chinese).金炜阳,王月娟,王雪俐,等.工业催化, 2009, 17(11), 12.47 He Y Y. Adsorption and photocatalytic degradation properties of highly hydrophobic molecular sieve supported TiO2 for phthalic ester. Master's Thesis, South China University of Technology,2014(in Chinese).何音韵.强疏水化介孔分子筛负载TiO2对邻苯二甲酸酯的吸附与光催化降解特性.硕士学位论文,华南理工大学,2014.48 Hoffmann F, Cornelius M, Morell J, et al. Angewandte Chemie International Edition, 2006, 45(20), 3216.49 Li H Y, Hua W M, He Q G, et al.Chinese Journal of Inorganic Chemistry, 2007(6), 1093(in Chinese).李惠云,华伟明,何其戈,等.无机化学学报, 2007(6), 1093.50 Dou B, Hu Q, Li J, et al. Journal of Hazardous Materials, 2011, 186(2-3), 1615.51 Batonneau-Gener I, Yonli A, Trouvé A, et al. Separation Science and Technology, 2010, 45(6), 768.52 Janus R, Wądrzyk M, Natkański P, et al. Journal of Industrial and Engineering Chemistry, 2019, 71, 465.53 Liu Y, Lin H, Mou C. Langmuir, 2004, 20(8), 3231.54 Hu Q, Li J J, Hao Z P, et al. Chemical Engineering Journal, 2009, 149(1-3), 281.55 Liu S, Chen J, Peng Y, et al. Chemical Engineering Journal, 2018, 334, 191.56 Liu S, Peng Y, Chen J, et al. Journal of Materials Chemistry A, 2018, 6(28), 13769.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[3] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[4] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[5] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[6] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[7] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[8] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[9] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[10] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[11] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[12] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[13] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[14] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[15] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed