Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15021-15032    https://doi.org/10.11896/cldb.19080015
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
尖晶石型金属氧化物的制备及光催化有机污染物降解:综述
孙宇杰1, 刘玉芹1, 徐芬2, 孙立贤2
1 中国地质大学(北京)材料科学与工程学院,北京 100083
2 桂林电子科技大学材料科学与工程学院,广西电子信息材料重点实验室,广西新能源材料结构与性能协同创新中心,桂林 541004
Preparation of Metal Spinel Oxides for Photocatalytic Degradation of Organic Pollutants:a Review
SUN Yujie1, LIU Yuqin1, XU Fen2, SUN Lixian2
1 School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
2 Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
下载:  全 文 ( PDF ) ( 4866KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机染料已成为当今水质污染的重要来源,而大多有机染料对光稳定、不易降解,因此,利用光催化技术解决水源污染问题是目前研究的热点。尖晶石型金属氧化物半导体材料被证明是一种能有效利用太阳光催化降解有机污染物的催化剂。
尖晶石型金属氧化物具有禁带较窄、可吸收可见光的特点。它们在光的照射下能激发产生电子和空穴,实现对有机染料的催化降解。如何调控尖晶石型金属氧化物的光催化性能,是当今国内外学者的研究重点。众多研究表明,影响尖晶石型金属氧化物催化性能的主要因素包括以下三个方面:(1)制备方法。其制备方法繁多,如热处理法(包括热分解)、水热-溶剂热法、溶胶-凝胶法、微波法、自燃烧法、共沉淀法、固态合成法、静电纺丝法等。制备方法不同可影响所制备材料的形貌、表面积、颗粒尺寸及禁带宽度等,从而影响材料的光催化性能。如对于ZnAl2O4,采用共沉淀法得到的材料的表面积为94.4 m2/g,而采用微波-水热法得到的材料的表面积大幅提高到279.7 m2/g;又如,采用金属硝酸盐和金属氯化物所制备的尖晶石型NiFe2O4的禁带宽度不同,分别为2.7 eV和1.6~1.8 eV。(2)掺杂第三种金属。对于禁带较宽的尖晶石型金属氧化物,可通过掺杂第三种金属来降低其禁带宽度。如金属Mg的掺杂使CoFe2O4的禁带宽度由2.4 eV降至1.8 eV,Ce3+的掺杂可使ZnAl2O4的禁带宽度由3.8 eV降至2.8 eV,少量Bi的掺杂可使CoFe2O4的禁带宽度由1.4 eV降至1.3 eV。(3)光生电子和空穴的有效分离。光催化剂的活性取决于光生电子或空穴的有效量。为改善尖晶石型光催化剂的光催化活性,可通过掺杂导电性的材料(如石墨烯)或具有合适电位的金属氧化物(如ZnO)、限域等办法实现光生电子和空穴的有效分离,降低二者的复合率,从而提高催化剂的催化活性。
目前报道的尖晶石型金属氧化物的种类很多,本文按金属酸根对其进行了分类,分别对尖晶石型铁酸盐、铝酸盐等材料的制备及光催化有机染料的降解机理进行了分析与总结,期望对开发新型的、具有优良催化性能的尖晶石型光催化剂提供一定的指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宇杰
刘玉芹
徐芬
孙立贤
关键词:  尖晶石型金属氧化物  光催化剂  有机染料  光降解    
Abstract: Most organic dyes are difficult to be photo-degraded due to their light stability. And organic dyes have been considered as an important source of water pollution now. Therefore, it is imminent to use photocatalytic technology to solve the problem of water pollution. Fortunately, metal spinel oxides semiconductor materials have been demonstrated to be an effective catalyst for the degradation of organic pollutants by using sunlight.
The spinel-type metal oxides have the characteristics of narrow band gap and absorption of visible light, and can generate electrons and holes under the irradiation of light to realize photocatalytic degradation of the organic dyes. How to regulate the photocatalytic performance of metal spinel oxides is the focus of current international and domestic research. Numerous studies have shown that the main factors affecting their catalytic performances include the following three aspects:
i. Preparation method. Various preparation methods, such as heat treatment (including thermal decomposition), hydrothermal-solvent heat, sol-gel, microwave method, self-combustion method, coprecipitation method, solid state synthesis method, electrospinning method, etc. Diffe-rent preparation methods can affect the morphology, surface area, particle size and band gap of the prepared materials, thus affecting the photocatalytic properties of the materials. For example, the surface area of ZnAl2O4 prepared by coprecipitation method and microwave-hydrothermal method was 94.4 m2/g and 279.7 m2/g, respectively;the forbidden band width of spinel NiFe2O4 prepared by using metal nitrate and metal chloride corresponded to 2.7 eV, 1.6—1.8 eV.
ⅱ.Doping the third metal. For spinel-type metal oxides with a wider band gap, the forbidden band width can be reduced by doping the third me-tal. For example, the doping of metal Mg can reduce the band gap of CoFe2O4 from 2.4 eV to 1.8 eV, and the doping of Ce3+ reduces the band gap of ZnAl2O4 from 3.8 eV to 2.8 eV. The doping of a small amount of Bi makes the band gap of CoFe2O4 drops from 1.4 eV to 1.3 eV.
ⅲ.Effective separation of photoinduced electrons and holes. In order to improve the photocatalytic activity of the spinel photocatalyst, it can be realized by doping a conductive material (such as graphene) and a metal oxide with a suitable potential (such as ZnO). The photoinduced electrons and the holes can be effectively separated to reduce the recombination rate of electron-hole pairs and to improve the catalytic activity of the photocatalyst.
There are many kinds of reported spinel-type metal oxides so far. This review classifies spinel-type metal oxides according to their metal acids. The preparation of spinel-type ferrites and aluminates, and the research progress of performance and mechanism of photocatalytic degradation of organic dyes are analyzed and summarized respectively, and the future development direction has also been prospected. It is expected that this review will play an important role in the development of a series of novel spinel photocatalysts with excellent catalytic performances.
Key words:  metal spinel oxides    photocatalyst    organic dyes    photocatalytic degrade
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  X511  
基金资助: 国家重点研发计划(2018YFB1502103; 2018YFB1502105);国家自然科学基金(51971068;51871065; 51671062;51863005;51462006;51801041); 广西新能源材料结构与性能协同创新中心(2012GXNSFGA06002); 广西创新驱动发展专项(AA17202030-1); 广西八桂学者基金; 广西人才小高地
通讯作者:  xufen@guet.edu.cn;sunlx@guet.edu.cn   
作者简介:  孙宇杰,目前就读于中国地质大学(北京)材料科学与工程学院本科。在刘玉芹副教授的指导下,已完成了一项“硅藻土负载CaFe2O4的制备及其光催化性能测试”的大学生创新项目,并申请了一项发明专利。
徐芬,博士,桂林电子科技大学教授、博士研究生导师。1986年在湖南大学获理学学士学位,1989年在湖南大学获理学硕士学位,2005年在中国科学院大连化学物理研究所获理学博士学位。1995—2001先后在德国和日本进行学习及合作研究。目前,主要从事先进能源材料研究。近年来发表论文100余篇,获批发明专利6项,省部级成果奖4项。
孙立贤,博士,桂林电子科技大学二级教授、博士研究生导师。广西优秀八桂学者,广西优秀专家,中国科学院优秀百人计划、英国皇家化学会会士、德国洪堡学者(AvH fellow)、日本产业技术(NEDO)研究员、全国优秀科技工作者,享受国务院政府特殊津贴, 入选2014—2018 Else-vier高被引学者。1994年于湖南大学获理学博士学位,1995—2001先后在德国耶拿大学(洪堡学者)和日本产业技术综合研究所(客座教授)合作研究;2001—2012年在中国科学院大连化学物理研究所工作,任材料热化学课题组组长;2012年到桂林电子科技大学工作,先后任院长、重点实验室主任等。Journal of Thermal Analysis & Calorimetry副主编,The Journal of Chemical Thermodynamics等期刊编委;中国仪表功能材料学会储能与动力电池专业委员会副主任等。目前,主要从事能源材料、热化学与传感器研究。近年来发表SCI论文400余篇,获批发明专利25项,获省部级成果奖8项。
引用本文:    
孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
SUN Yujie, LIU Yuqin, XU Fen, SUN Lixian. Preparation of Metal Spinel Oxides for Photocatalytic Degradation of Organic Pollutants:a Review. Materials Reports, 2020, 34(15): 15021-15032.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080015  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15021
1 Markham S C.Journal of Chemical Education, 1955, 32, 540.2 Jiang H B, Gao L, Zhang Q H.Journal of Inorganic Materials, 2003, 18(3), 695(in Chinese).姜洪波, 高濂, 张青红. 无机材料学报, 2003, 18(3), 695.3 Casbeer E, Sharma V K, Li X Z, Separation and Purification Technology, 2012, 87, 1.4 Yang Q, Wang S N, Chen F, et al.Catalysis Communications, 2017, 99, 15.5 Li X Y, Hou Y, Zhao Q D, et al. Journal of Colloid and Interface Science, 2011, 358, 102.6 Anchieta C G, Salle D, Foletto E L, et al.Ceramics International, 2014, 40, 4173.7 Anchieta C G, Severo E C, Rigo C, et al.Materials Chemistry and Phy-sics, 2015, 160, 141.8 Dhiman M, Sharma R, Kumar V, et al. Ceramics International, 2016, 42, 12594.9 Behera A, Kandi D, Majhi S M, et al.Beilstein Journal of Nanotechnology, 2018, 9, 436.10 Patil S B, Naik H S B, Nagaraju G, et al.Materials Chemistry and Phy-sics, 2018, 212, 351.11 Xu X L, Xiao L B, Jia YM, et al. Journal of Electronic Materials, 2018, 47, 536.12 Borhan A I, Samoila P, Hulea V, et al.Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1655.13 Borhan A I, Samoila P, Hulea V, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 279, 17.14 Masoudpanah S M, Hasheminisari M, Ghasemi A. Journal of Sol-gel Science and Technology, 2016, 80, 487.15 Padmapriya G, Manikandan A, Krishnasamy V, et al.Journal of Superconductivity and Novel Magnetism, 2016, 29, 2141.16 Padmapriya G, Manikandan A, Krishnasamy V, et al.Journal of Molecular Structure, 2016, 1119, 39.17 Sharma R, Thakur P, Kumar M, et al.Journal of Alloys and Compounds, 2016, 684, 569.18 Sharma R, Thakur P, Kumar M, et al.Journal of Alloys and Compounds, 2018, 746, 532.19 Atrak K, Ramazani A, Fardood S T.Environmental Technology, DOI:10.1080/09593330.2019.1581841.20 Rani G J, Rajan M A J, kumar G G.Research on Chemical Intermediates, 2017, 43, 2669.21 Habibi M H, Parhizkar J.Molecular and Biomolecular Spectroscopy, 2015, 150, 879.22 He Y Z, Dai C M, Zhou X F.Environmental Science and Pollution Research International, 2016, 24, 2065.23 Moura M N, Barrada R V, Almeida J R, et al.Chemosphere, 2017, 182, 339.24 Kapoor S, Goyal A, Bansal S, et al.New Journal of Chemistry, 2018, 42, 14965.25 Pudukudy M, Yaakob Z.Chemical Papers, 2014, 68, 1087.26 Sundararajan M, Kennedy L J, Nithya P, et al.Journal of Physical and Chemistry of Solids, 2017, 108, 61.27 Assi H, Atiq S, Rammay S M, et al.Journal of Mate-rials Science: Materials in Electronics, 2017, 28, 2250.28 Maksoud M I A A, El-Sayyad G S, Ashour A H, et al.Microbial Pathogenesis, 2019, 127, 144.29 Shevale V B, Dhodamani A G, Koli V B, et al.Materials Research Bulletin, 2017, 89, 79. 30 Vinosha P A, Xavier B, Ashwini A, et al.Optik, 2017, 137, 244.31 Lassoued A, Lassoued M S, Dkhil B, et al.Journal of Materials Science: Materials in Electronics, 2018, 29, 7057.32 Vinosha P A, Xavier B, Krishnan S, et al.Materials Research Bulletin, 2018, 101, 190.33 Naik M M, Naik H S B, Nagaraju G, et al.Journal of Materials Science: Materials in Electronics, 2018, 29, 20395.34 Samoila P, Cojocaru C, Sacarescu L, et al.Applied Catalysis B: Environmental, 2017, 202, 21.35 Zhu H Y, Jiang R, Huang S H, et al.Ceramics International, 2015, 41, 11625.36 Chen X J, Wang P F, Xu J C, et al.Advanced Powder Technology, 2017, 28, 2087.37 Moradi S, Fardood S T, Ramazani A. Journal of Materials Science: Materials in Electronics, 2018, 29, 14151.38 Sharma R, Kumar V, Bansal S, et al.Journal of Molecular Catalysis A: Chemical, 2015, 402, 53.39 Liu S T, Zhang A B, Yan K K, et al.Separation and Purification Technology, 2014, 135, 35.40 Vijayaraghavan T, Suriyaraj S P, Selvakumar R, et al.Materials Science and Engineering B, 2016, 210, 43. 41 Wang S F, Li D M, Yang C Q, et al.Journal of Sol-Gel Science and Technology, 2017, 84, 169.42 Hegazy E Z, Kosa S A, Elmaksod I H A, et al.Ceramics International, DOI:10.1016/j.ceramint.2019.01.015.43 Joshi G P, Saxena N S, Mangal R,et al.Bulletin of Materials Science, 2003, 26, 387.44 Foletto E L, Battiston S, Simões J M, et al.Microporous and Mesoporous Materials, 2012, 163, 29.45 Abdalla Z E A, Kumar M, Hassan I, et al.Journal of Materials Science: Materials in Electronics, 2018, 29, 19644.46 Visinescu D, Papa F, Ianculescu A C, et al. Journal of Nanoparticle Research, 2013,15, 1456.47 Sumathi S, Kavipriya A.Solid State Sciences, 2017, 65, 52.48 Miroliaee A, Hoshdari S, Chahaki M M, et al.Materialwissenschaft und Werkstofftechnik, 2019, 50, 140.49 Nassar M Y, Ahmed I S, Samir I.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 131, 329.50 Wang S F, Gao H J, Wei Y, et al.CrystEngComm, 2019, 21, 263.51 Wang R T, Liang X P, Peng Y, et al.Journal of Ceramic Processing Research, 2010, 11, 173.52 Ji W L, Wei H Y, Li H, et al.Journal of the Ceramic Society of Japan, 2018,126, 128.53 Pratapkumar C, Prashantha S C, Nagabhushana H, et al.Journal of Alloys and Compounds, 2017, 728, 1124.54 Taleb R.Journal of Materials Science: Materials in Electronics, 2016, 27, 5665. 55 Menon S G, Kulkarni S D, Choudhari K S, et al.Journal of Experimental Nanoscience, 2016, 11, 1227.56 Liu N, Jiang Y Y, Diao Y C, et al.Journal of Dalian Polytechnic University, 2012, 31(4), 275 (in Chinese).刘楠, 姜妍彦, 刁云超, 等. 大连工业大学学报, 2012, 31(4), 275.57 Rahimi-Nasrabadi M, Ahmadi F, Eghbali-Arani M.Journal of Materials Science: Materials in Electronics, 2017, 28, 2415.58 Tangcharoen T, Thienprasert J T, Kongmark C. Journal of Materials Science: Materials in Electronics, 2018, 29, 8995.59 Maddahfar M, Ramezani M, Sadeghi M, et al.Journal of Materials Science: Materials in Electronics, 2015, 26, 7745.60 Akika F Z, Benamira M, Lahmar H, et al.Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 542.61 Kirankumar V S, Mayank N, Sumathi S.Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 602. 62 Ramezani M, Hosseinpour-mashkani S M.Journal of Electronic Materials, 2017, 46, 1371. 63 Habibi M H, Shojaee E.Journal of Materials Science: Materials in Electronics, 2017, 28, 10838.64 Khanahmadzadeh S, Enhessari M, Solati Z, et al.Material Science in Semiconductor Process, 2015, 31, 599.65 Pinto R B, Peralta-Zamora P, Wypych F.Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 46.66 Rahmatolahzadeh R, Mousavi-Kamazani M,Shobeiri S A. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 313.67 Nithya S M, Kang M.Materials Research Bulletin, 2017, 91, 108.68 Cui B, Lin H, Zhao X C, et al.Acta Physico-Chimica Sinica, 2011, 27(10), 2411 (in Chinese).崔柏, 林红, 赵晓冲, 等. 物理化学学报, 2011, 27(10), 2411.69 Habibi M H, Sabzyan H, Bayranvand M.Journal of Materials Science: Materials in Electronics, 2017, 28, 8546.70 Habibi M H, Bagheri P.Journal of the Iranian Chemical Society, 2017, 14, 1643.71 Zheng J H, Hu Y D, Zhang L.Physical Chemistry Chemical Physics, 2017, 19, 25044.72 Habibi M H, Mosavi V.Journal of Materials Science: Materials in Electronics, 2017, 28, 11078.73 Zhang D F, Zhang G Z, Wang Q, et al.Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 311.74 Ramezanalizadeh H, Peymanfar R, Khodamoradipoor N.Journal for Light and Electron Optics, 2019,180, 113.75 Akhundi A, Habibi-Yangjeh A.Journal of Colloid and Interface Science, 2017, 504, 697.76 Peymanfar R, Ramezanalizadeh H.Optik-International Journal for Light and Electron Optics, 2018, 169, 424.77 Sanadi K R, Patil S P, Parale V G, et al.Journal of Materials Science: Materials in Electronics, 2018, 29, 7274.78 Abbasi A, Khojasteh H, Hamadanian M, et al.Separation and Purification Technology, 2018, 195, 37.79 Bouchaaba H, Bellal B, Maachi R, et al.Journal of the Taiwan Institute of Chemical Engineers, 2015, 58, 310.80 Yan T, Liu H Y, Sun M, et al.RSC Advances, 2015, 5, 10688.81 Yuan Y F, Huang J J, Tu W X, et al.Journal of Alloys and Compounds, 2014, 616, 461.82 Sun M, Li D Z, Zhang W J, et al.Journal of Solid State Chemistry, 2012, 190, 135.83 Ding P, Zhang M, Xie Z L, et al.Journal of Nanomaterials, 2015, 2015, 1.84 Du H Y, Luan J F.Solid State Sciences, 2012, 14, 1295.85 Cui Y B, Luan J F.Journal of Environmental Sciences, 2015, 29, 51.86 Coimbra D W R, Cunha F S, Sczancoski J C, et al.Journal of Materials Science: Materials in Electronics, 2019, 30, 1322.
[1] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[2] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[7] 李磊,程博闻,康卫民,马晓光,庄旭品. 静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 207-212.
[8] 王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed