Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20080069-11    https://doi.org/10.11896/cldb.20080069
  无机非金属及其复合材料 |
功能化SBA-15介孔二氧化硅的制备及在药物递送系统中的应用进展
张文君, 吕江维†,*, 陈威, 王鹏光
哈尔滨商业大学药学院,哈尔滨 150076
Preparation of Functionalized SBA-15 Mesoporous Silica and Its Application in Drug Delivery System
ZHANG Wenjun, LYU Jiangwei†,*, CHEN Wei, WANG Pengguang
School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
下载:  全 文 ( PDF ) ( 7800KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 介孔二氧化硅具有孔径均匀可调、孔容大、表面积大、表面容易功能化修饰、无毒、生物相容性好等优点,是一种理想的药物载体材料,可以用于构建药物递送系统(Drug delivery system,DDS),解决传统载体如脂质体、聚合物胶束等存在的稳定性差、分散不均匀、药物过早降解和消除等问题。
SBA-15是一种新型的二氧化硅介孔分子筛,以其较大的孔径、较厚的孔壁、高比表面积以及有序孔道等特征被广泛应用于DDS。SBA-15表面存在大量硅烷醇基,表面活性高,利用适当的官能团、金属离子或其他材料等对其孔口、孔道内外表面进行修饰,可以实现负载药物的可控释放、多功能智能化响应及抗癌药物的靶向治疗等多种功能,最大程度地发挥药物的治疗效果,有效降低药物的毒副作用,提高药物的生物利用度。
近年来,经过功能化修饰的SBA-15在DDS中的应用主要体现在:(1)提高药物溶解度及溶出速率。选择合适的功能化试剂改变SBA-15表面性质,进而改变载体表面与药物分子之间的相互作用,增加药物的吸附量,从而改善难溶性药物的溶解度和溶出速率。(2)作为药物缓释载体。通过有机基团、金属或金属氧化物等的表面修饰,以增强药物与载体表面之间的作用力,延长药物的释放。(3)作为药物控释载体。通过构建配体修饰的靶向型DDS、内部或外部刺激响应型DDS实现药物的可控释放。除此以外,SBA-15在骨组织修复、基因治疗、医学成像、伤口敷料等生物医学工程方面也有广泛的应用。
本文介绍了功能化SBA-15介孔二氧化硅的制备方法、类型、特点,归纳了其在DDS中的应用及最新研究进展,以期为功能化介孔二氧化硅载体的实际应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文君
吕江维
陈威
王鹏光
关键词:  SBA-15  介孔二氧化硅  功能化修饰  药物递送系统    
Abstract: Mesoporous silica is an ideal drug carrier that can be used in drug delivery system (DDS)due to its unique characterizations such as uniform and tunable pore size, large pore volume and surface area, easy functionalization, non-toxicity and good biocompatibility. It can solve the problems of traditional liposomes and polymer micelles including poor stability, uneven dispersion, premature drug degradation and elimination.
As a novel mesoporous molecular sieve, SBA-15 has been widely used in DDS for its large pore size, thick pore wall, high specific surface area and orderly channel. Since a large number of silanol groups with high activity are located on the surface of SBA-15, it is easy to modify its orifice, inner and outer surface of the channel by suitable functional groups, metal ions or other materials. The functionalized SBA-15 can realize the controlled release of drugs, multi-function intelligent response and targeted treatment of anticarcinogens, which finally accomplishes the maximization of the therapeutic effect, reduction of the side effects and improvement of the bioavailability of drugs.
In recent years, the applications of functionalized SBA-15 in DDS are mainly as follows: (i) improvement of the solubility and dissolution rate of drugs. For this purpose, an appropriate reagent for functionalization should be selected to modify the surface characterization of SBA-15, which results in changing the interaction between the carrier surface and drug molecules. This interaction promotes the drug adsorption and improves the solubility and dissolution rate of insoluble drugs. (ii) Uses as carriers for sustained release of drugs. The surface of SBA-15 can be modified by organic groups, metals or metal oxides to enhance the force between drugs and carrier surfaces, thus prolonging the drug release. (iii) Uses as carriers for controlled release of drugs. A controllable drug release can be achieved by constructing targeted DDS with ligand modification and internal or external stimulus-responsive DDS. In addition, SBA-15 is also widely applied in biomedical engineering, bone tissue repair, gene therapy, medical imaging, wound dressings, etc.
This review introduces the preparation methods, types and characteristics of functionalized SBA-15 mesoporous silica, and also summarizes its applications and the latest research progress in drug delivery, aiming to provide a reference for the practical application of functionalized mesoporous silica carriers.
Key words:  SBA-15    mesoporous silica    functional modification    drug delivery system
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  R944  
基金资助: 2019年哈尔滨商业大学青年人才专项计划项目(2019CX12)
通讯作者:  *pp198259@163.com   
作者简介:  †共同第一作者
张文君,哈尔滨商业大学药学院副教授、硕士研究生导师。2005年本科毕业于黑龙江中医药大学药学院,2011年在沈阳药科大学中药制剂学专业取得博士学位,2016—2019年在南京医科大学进行博士后研究工作,目前主要研究领域是新型药物传输系统的研究,发表专业相关论文30余篇。吕江维,哈尔滨商业大学药学院副教授、硕士研究生导师。2005年本科毕业于哈尔滨工业大学,2010年在哈尔滨工业大学取得博士学位,2011—2014年在哈尔滨工业大学进行电催化材料的博士后研究工作。目前主要从事介孔材料的研究工作。主持完成国家自然科学基金、中国博士后科学基金、省教育厅基金等多个项目,发表专业相关论文30余篇。
引用本文:    
张文君, 吕江维, 陈威, 王鹏光. 功能化SBA-15介孔二氧化硅的制备及在药物递送系统中的应用进展[J]. 材料导报, 2022, 36(18): 20080069-11.
ZHANG Wenjun, LYU Jiangwei, CHEN Wei, WANG Pengguang. Preparation of Functionalized SBA-15 Mesoporous Silica and Its Application in Drug Delivery System. Materials Reports, 2022, 36(18): 20080069-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080069  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20080069
1 Manzano M, Vallet-Regí M. Journal of Materials Chemistry, 2010, 20(27), 5593.
2 Yang P, Gai S, Lin J. Chemical Society Reviews, 2012, 41(9), 3679.
3 Huo Q, Margolese D I, Ciesla U, et al. Nature, 1994, 368(6469), 317.
4 Ryoo R, Kim J M, Ko C H, et al. The Journal of Physical Chemistry, 1996, 100(45), 17718.
5 Bagshaw S A, Prouzet E, Pinnavaia T J. Science, 1995, 269(5228),1242.
6 Tanev P T,Pinnavaia T J. Science, 1995, 267(5199), 865.
7 Zhao D, Feng J, Huo Q, et al. Science, 1998, 279(5350), 548.
8 Zong M, Huang Y, Zhao Y. Materials Reports A:Review Papers, 2012, 26(9), 54(in Chinese).
宗蒙, 黄英, 赵阳. 材料导报:综述篇, 2012, 26(9), 54.
9 Kim S S, Pauly T R, Pinnavaia T J. Chemical Communications, 2000, 17, 1661.20080069-20080069-
10 Wang T Y, Zhao Q F, Han X, et al. Chinese Pharmaceutical Journal, 2014, 49(13), 1139(in Chinese).
王天怡, 赵勤富, 韩旭, 等. 中国药学杂志, 2014, 49(13),1139.
11 Siefker J, Karande P, Coppens M. Expert Opinion on Drug Delivery, 2014, 11(11), 1781.
12 Vavsari V F, Ziarani G M, Badiei A. RSC Advances, 2015, 5(111), 91686.
13 Liu J H, Wei X J, Xue J. Chemistry, 2019, 82(3), 209(in Chinese).
刘江红, 魏晓航, 薛健. 化学通报, 2019, 82(3), 209.
14 Zhang Z, Yuan H. Applied Chemical Industry, 2019, 48(12), 3032(in Chinese).
张志,袁红. 应用化工, 2019, 48(12), 3032.
15 Albayati T M, Salih I K, Alazzawi H F. Heliyon, 2019, 5(10), e02539.
16 Song S W, Hidajat K, Kawi S. Langmuir, 2005, 21(21), 9568.
17 Gao J, Zhang X, Xu S, et al. Chemistry an Asian Journal, 2014, 9(3), 908.
18 Trendafilova I, Szegedi A, Mihaly J, et al. Materials Science and Engineering: C, 2017, 73, 285.
19 Isaacs M A, Barbero B, Durndell L J, et al. Antibiotics (Basel, Switzerland), 2018, 7(3), 55.
20 Chen C C, Wu H H, Huang H Y, et al. International Journal of Environmental Research and Public Health, 2016, 13(1), 99.
21 Ma M, Lu L, Li H, et al. Polymers, 2019, 11(11), 1823.
22 Pathan S, Solanki P, Patel A. Microporous and Mesoporous Materials, 2018, 258, 114.
23 Zheng X, Feng S, Wang X D, et al. Asian Journal of Pharmaceutical Sciences, 2019, 14(3), 275.
24 Xu W J, Gao Q, Xu Y, et al. Acta Chimica Sinica, 2008, 66(14), 1658(in Chinese).
徐武军, 高强, 徐耀,等. 化学学报, 2008, 66(14), 1658.
25 Dalsin J L, Hu B H, Lee B P, et al. Journal of the American Chemical Society, 2003, 125(14), 4253.
26 Krishnamoorthy M, Hakobyan S, Ramstedt M, et al. Chemical Reviews, 2014, 114(21), 10976.
27 Sun L, Baker G L, Bruening M L. Macromolecules, 2015, 38(6), 2307.
28 Ma L, Li N, Zhu J, et al. Polymers, 2017, 9(2), 58.
29 Lewandowski D, Ruszkowski P, Pińska A, et al. Plos One, 2015, 10(7), e0132541.
30 Fagundes L B, Sousa T G F, Sousa A, et al. Journal of Non-Crystalline Solids, 2006, 352(32-35), 3496.
31 Cauda V, Fiorilli S, Onida B, et al. Journal of Mate-rials Science Mate-rials in Medicine, 2008, 19(10), 3303.
32 Moritz M, Łaniecki M. Journal of Solid State Chemistry, 2011, 184(7), 1761.
33 Wang H, Gao X, Wang Y, et al. Ceramics International, 2012, 38(8), 6931.
34 Hwang D H, Lee D, Lee H, et al. Korean Journal of Chemical Enginee-ring, 2010, 27(4), 1087.
35 Moritz M, Geszke-Moritz M. Materials, 2019, 12(22), 3671.
36 Quan G, Li Q W, Zhang X X, et al. Colloids and Surfaces B: Biointerfaces, 2016, 141, 476.
37 Halamová D, Badanicová M, Zelenák V, et al. Applied Surface Science, 2010, 256(22), 6489.
38 Yu H, Zhai Q Z. Microporous and Mesoporous Materials, 2009, 123(1-3), 298.
39 Se-Na K, Ah K S, Ho L S, et al. Journal of Solid State Chemistry, 2018, 268, 102.
40 Ghaith E, Connolly S. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 6, 199.
41 Shen S, Chow P S, Chen F, et al. Chemical & Pharmaceutical Bulletin, 2007, 55(7), 985.
42 Wan M M, Sun X D, Liu S, et al. Microporous & Mesoporous Materials, 2014, 199, 40.
43 Šuleková M, Váhovská L, Hudák A, et al. Molecules (Basel, Switzerland), 2019, 24(7), 1317.
44 Bahrami Z, Badiei A, Atyabi F. Chemical Engineering Research and Design, 2014, 92(7), 1296.
45 Pang J, Zhao L, Zhang L, et al. Journal of Colloid and Interface Science, 2013, 395, 31.
46 Lewandowski D, Lewandowska M, Ruszkowski P, et al. PLOS ONE, 2015, 10(5), e0126251.
47 Nieto A, Balas F, Colilla M, et al. Microporous & Mesoporous Materials, 2008, 116(1-3), 4.
48 Villaverde G, Nairi V, Baeza A, et al. Chemistry, 2017, 23(30), 7174.
49 Edeler D, Drača D, Petković V, et al. Materials Science & Engineering C, 2019, 100, 315.
50 Gisbert-Garzarán M, Manzano M, Vallet-Regí M, et al. Pharmaceutics, 2020, 12(1), 83.
51 Yoneda T, Hiasa M, Nagata Y, et al. Biochimica et Biophysica Acta Biomembranes, 2015, 1848(10), 2677.
52 Hu D, Li H, Wang B, et al. ACS Nano, 2017, 11(9), 9330.
53 Liu Y, Ding X, Li J, et al. Nanotechnology, 2015, 26(14), 145102.
54 Lin H M, Xing R, Wu X, et al. Materials Research Innovations, 2013, 17(6), 360.
55 Reema N, Usha N, Ashok R, et al. Pharmaceutics, 2018, 10(3), 118.
56 Jadhav S A, Scalarone D, Brunella V, et al. Express Polymer Letters, 2017, 11(2), 96.
57 Prokopowicz M, Z·eglinski J, Szewczyk A, et al. AAPS PharmSciTech, 2018, 20(1),17.
58 Schlossbauer A, Dohmen C, Schaffert D, et al. Angewandte Chemie International Edition, 2011, 50(30), 6828.
59 Zhu S M, Zhou Z Y, Zhang D, et al. Microporous and Mesoporous Materials, 2007, 106(1),56.
60 Colilla M, Manzano M, Vallet-Regí M. International Journal of Nanomedicine, 2008, 3(4),403.
61 Szewczyk A, Prokopowicz M. Materials Letters, 2018, 227, 136.
62 Gonzalez G, Sagarzazu A, Cordova A, et al. Microporous and Mesoporous Materials, 2018, 256,251.
63 Tan H L, Yang S B, Dai P Y, et al. International Journal of Nanomedicine, 2015, 10, 4341.
64 Zhou Y X, Quan G L, Wu Q L, et al. Acta Pharmaceutica Sinica B, 2018, 8(2), 165.
65 Zhang J, Chen M, Zhao X, et al. AIP Advances, 2018, 8(1), 015220.
66 Yiu H H P, Mcbain S C, Lethbridge Z A D, et al. Journal of Nanoscience & Nanotechnology, 2011, 11(4), 3586.
67 Yang P P, Huang S S, Kong D Y, et al. Inorganic Chemistry, 2007, 46(8), 3203.
68 Li Q F, Yue D, Lu W, et al. Scientific Reports, 2015, 5, 8385.
69 Shen Z, Cai N, Xue Y N, et al. Cellulose, 2020, 27(5), 2737.
[1] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[2] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[3] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[4] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[5] 赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed