Abstract: Facing the freshwater shortage and energy crisis, in order to achieve the goal of carbon dioxide emissions peaking and achieve carbon neutrality, researchers are devoted to seeking low-carbon, environmental-friendly and sustainable solutions. Recently, the sustainable freshwater generating strategy attracted much attraction about combining ‘green solar energy’ and ‘blue ocean energy’. Various methods have been explored to improve the energy conversion efficiency in generating freshwater and clean energy. Thus, the interfacial solar-vapor conversion technology became popular due to its high thermal utilization, photothermal conversion and vapor production rate. Due to its reproducibility and low cost, biochar as a kind of carbon-based photothermal material is used so often as solar absorber in the above interfacial system. In this review, we discuss five critical factors emphatically-materials, systems, hydrophily, water transport channel and salt-rejection designs-which, if addressed systematically, could increase the performance of biochar photothermal conversion devices. Meanwhile, we illuminate briefly the mechanism of photothermal conversion and the performance evaluation of biochar. Finally, the hot topics and challenges are summarized in the practical applications of biochar on desalination and energy generation, which provides a roadmap for the future development of the interfacial solar-vapor conversion technology.
赵春波, 赵嵘, 戚剑飞, 庄文博, 刘婕, 陈沛, 万艳芬, 杨鹏. 面向双碳目标的水淡技术:生物质碳用于界面太阳能光蒸汽转化技术的研究进展[J]. 材料导报, 2023, 37(12): 21110158-13.
ZHAO Chunbo, ZHAO Rong, QI Jianfei, ZHUANG Wenbo, LIU Jie, CHEN Pei, WAN Yanfen, YANG Peng. Utilizing Biochars in Interfacial Solar-Vapor Conversion and Seawater Desalination: Potential Value for ‘Double Carbon’ Goals and State of the Art. Materials Reports, 2023, 37(12): 21110158-13.
1 Kumar L, Hasanuzzaman M, Rahim N A. Energy Conversion and Management, 2019, 195, 885. 2 Liu B, Zhang X, Ji J. International Journal of Energy Research, 2021, 45(6), 8347. 3 Kabir E, Kumar P, Kumar S, et al. Renewable and Sustainable Energy Reviews, 2018, 82, 894. 4 Jian S, Tian Z, Hu J, et al. Advanced Powder Materials, DOI:10. 1016/j. apmate. 2021. 09. 004. 5 Zhao G, Ma W, Wang X, et al. Advanced Powder Materials, DOI: 10. 1016/j. apmate. 2021. 09. 008. 6 Siria A, Bocquet M L, Bocquet L. Nature Reviews Chemistry, 2017, 1(11), 91. 7 Liang N, Li P, Liu Z, et al. Processes, 2020, 8(6), 737. 8 Khan N, Kalair A, Abas N, et al. Renewable and Sustainable Energy Reviews, 2017, 72, 590. 9 Wang Z L, Jiang T, Xu L. Nano Energy, 2017, 39, 9. 10 Ghasemi H, Ni G, Marconnet A M, et al. Nature Communications, 2014, 5, 4449. 11 Elimelech M, Phillip W A. Science, 2011, 333(6043), 712. 12 Xiao T X, Liang X, Jiang T, et al. Advanced Functional Materials, 2018, 28(35), 1802634. 13 Khawaji A D, Kutubkhanah I K, Wie J M. Desalination, 2008, 221(1-3), 47. 14 Chen J, Feng J, Li Z, et al. Nano Letters, 2019, 19(1), 400. 15 Gao M, Peh C K, Phan H T, et al. Advanced Energy Materials, 2018, 8(25), 1800711. 16 Bai H, Liu N, Hao L, et al. Energy & Environmental Materials, DOI: 10. 1002/eem2. 12235. 17 Geng Y, Zhang K, Yang K, et al. Carbon, 2019, 155, 25. 18 Xiao P, He J, Ni F, et al. Nano Energy, 2020, 68, 104385. 19 Guo Z, Wang G, Ming X, et al. ACS Applied Materials & Interfaces, 2018, 10(29), 24583. 20 Ding D, Huang W, Song C, et al. Chemical Communications, 2017, 53(50), 6744. 21 Huang W, Hu G, Tian C, et al. Sustainable Energy & Fuels, 2019, 3(11), 3000. 22 Yang J, Chen Y, Jia X, et al. ACS Applied Materials & Interfaces, 2020, 12(41), 47029. 23 Zheng Z, Li H, Zhang X, et al. Nano Energy, 2020, 68, 104298. 24 Geng X, Zhang D, Zheng Z, et al. Nano Energy, 2021, 82, 105700. 25 Shao Y, Tang J, Li N, et al. EcoMat, 2020, 2(1), e12018. 26 Zhou J, Sun Z, Chen M, et al. Advanced Functional Materials, 2016, 26(29), 5368. 27 Neumann O, Feronti C, Neumann A D, et al. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29), 11677. 28 Park S H, Park J H, Kim J, et al. Desalination, 2021, 500, 114900. 29 Wu D, Liang J, Zhang D, et al. Solar Energy Materials and Solar Cells, 2020, 215, 110591. 30 Zhou Y, Ding T, Gao M, et al. Nano Energy, 2020, 77, 105102. 31 Li N, Qiao L, He J, et al. Advanced Functional Materials, 2020, 31(7), 2008681. 32 Yang T, Lin H, Lin K T, et al. Sustainable Materials and Technologies, 2020, 25, e00182. 33 Yang X, Yang Y, Fu L, et al. Advanced Functional Materials, 2018, 28(3), 1704505. 34 Li X, Zhu B, Zhu J. Carbon, 2019, 146, 320. 35 Li Y, Gao T, Yang Z, et al. Nano Energy, 2017, 41, 201. 36 Wang G, Fu Y, Guo A K, et al. Chemistry of Materials, 2017, 29(13), 5629. 37 Wang Q. Influence of biomass feedstocks and production temperatures on the structure-activities of biochar. Master’s Thesis, Shanghai Jiao Tong University, China, 2014 (in Chinese). 王群. 生物质源和制备温度对生物炭构效的影响. 硕士学位论文, 上海交通大学, 2014. 38 Bi Z, Kong Q, Cao Y, et al. Journal of Materials Chemistry A, 2019, 7(27), 16028. 39 Liu W J, Jiang H, Yu H Q. Energy & Environmental Science, 2019, 12(6), 1751. 40 Wu Y, Kong R, Ma C, et al. Energy & Environmental Materials, DOI: 10. 1002/eem2. 1225. 41 Gong B, Yang H, Wu S, et al. Carbon, 2021, 171, 359. 42 Fowles M. Biomass and Bioenergy, 2007, 31(6), 426. 43 Trakal L, Komárek M, Száková J, et al. Plant, Soil and Environment, 2011, 57(8), 372. 44 Manya J J. Environmental Science & Technology, 2012, 46(15), 7939. 45 Zhu G, Ma L, Lv H, et al. Nanoscale, 2017, 9(3), 1237. 46 Sun Y, Webley P A. Chemical Engineering Journal, 2010, 162(3), 883. 47 Guo C, Liao W, Li Z, et al. Carbon, 2015, 85, 279. 48 Li Y, Li C, Qi H, et al. RSC Advances, 2018, 8(23), 12666. 49 Yu F, Li S, Chen W, et al. Energy & Environmental Materials, 2019, 2(1), 55. 50 Boriskina S V, Raza A, Zhang T, et al. MRS Bulletin, 2019, 44(1), 59. 51 Chen Y C, Sha C C, Wang X Y, et al. Energy Research & Utilization, 2019(4), 23 (in Chinese). 陈宇超, 沙畅畅, 王心妤, 等. 能源研究与利用, 2019(4), 23. 52 Wang X, He Y, Cheng G, et al. Energy Conversion and Management, 2016, 130, 176. 53 Chen C, Li Y, Song J, et al. Advanced Materials, 2017, 29(30), 1701756. 54 Ito Y, Tanabe Y, Han J, et al. Advanced Materials, 2015, 27(29), 4302. 55 Ni G, Miljkovic N, Ghasemi H, et al. Nano Energy, 2015, 17, 290. 56 Zhu L L, Gao M M, Peh C K N, et al. Advanced Energy Materials, 2018, 8(16), 1702149. 57 Storer D P, Phelps J L, Wu X, et al. ACS Applied Materials & Interfaces, 2020, 12(13), 15279. 58 Han X, Wang W, Zuo K, et al. Nano Energy, 2019, 60, 567. 59 Zhou J, Gu Y, Liu P, et al. Advanced Functional Materials, 2019, 29(50), 1903255. 60 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841. 61 Zhu L, Gao M, Peh C K N, et al. Nano Energy, 2019, 57, 507. 62 Li X, Ni G, Cooper T, et al. Joule, 2019, 3(8), 1798. 63 Liang J, Liu H, Yu J, et al. Nanophotonics, 2019, 8(5), 771. 64 Fang J, Liu J, Gu J J, et al. Chemistry of Materials, 2018, 30(18), 6217. 65 Tian Y, Yang H, Wu S, et al. Nano Energy, 2019, 66, 104125. 66 Lu Y, Wang X, Fan D, et al. Sustainable Materials and Technologies, 2020, 25, e00180. 67 Li Z, Wang C, Lei T, et al. Advanced Sustainable Systems, 2019, 3(4), 1800144. 68 Liu J, Yao J, Yuan Y, et al. Advanced Sustainable Systems, 2020, 4(9), 2000126. 69 Zhu M, Yu J, Ma C, et al. Solar Energy Materials and Solar Cells, 2019, 191, 83. 70 Liu J, Liu Q, Ma D, et al. Journal of Materials Chemistry A, 2019, 7(15), 9034. 71 Zhang H, Li L, Jiang B, et al. ACS Applied Materials & Interfaces, 2020, 12(14), 16503. 72 Sun P, Zhang W, Zada I, et al. ACS Applied Materials & Interfaces, 2020, 12(2), 2171. 73 Bian Y, Shen Y, Tang K, et al. Global Challenges, 2019, 3(10), 1900040. 74 Li J, Zhou X, Chen G, et al. Solar Energy Materials and Solar Cells, 2021, 222, 110941. 75 Zhang S, Zang L, Dou T, et al. ACS Omega, 2020, 5(6), 2878. 76 Jiang H, Geng X, Li S, et al. Journal of Materials Science & Technology, 2020, 59, 180. 77 Chao W, Li Y, Sun X, et al. Chemical Engineering Journal, 2021, 405, 126703. 78 Chen X, Wu Z, Lai D, et al. Journal of Materials Chemistry A, 2020, 8(43), 22645. 79 Zhang Q, Ren L, Xiao X, et al. Carbon, 2020, 156, 225. 80 Wilson H M, Rahman A R S, Parab A E, et al. Desalination, 2019, 456, 85. 81 Guo M X, Wu J B, Li F H, et al. New Carbon Materials, 2020, 35(4), 436. 82 Yu F, Guo Z, Xu Y, et al. ACS Applied Materials & Interfaces, 2020, 12(51), 57155. 83 Indriyati, Primadona I, Permatasari F A, et al. Nanoscale, 2021, 13(16), 7523. 84 Zhou J, Sheng Z, Han H, et al. Materials Letters, 2012, 66(1), 222. 85 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29(28), 1606762. 86 Zhang Q, Li L, Jiang B, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28179. 87 Chao W, Sun X, Li Y, et al. ACS Applied Materials & Interfaces, 2020, 12(19), 22387. 88 Liu N, Hao L, Zhang B, et al. Energy & Environmental Materials, DOI: 10. 1002/eem2. 12199. 89 Hu N, Xu Y, Liu Z, et al. Carbohydrate Polymers, 2020, 243, 116480. 90 Guo Y, Lu H, Zhao F, et al. Advanced Materials, 2020, 32(11), 1907061. 91 Guo A, Fu Y, Wang G, et al. RSC Advances, 2017, 7(8), 4815. 92 Ishii S, Sugavaneshwar R P, Nagao T. The Journal of Physical Chemistry C, 2016, 120(4), 2343. 93 Wilson H M, Ahirrao D J, Raheman Ar S, et al. Solar Energy Materials and Solar Cells, 2020, 215, 110604. 94 Li X, Lin R, Ni G, et al. National Science Review, 2018, 5(1), 70. 95 Xu J, Wang Z, Chang C, et al. Desalination, 2020, 484, 114423. 96 Gao S, Dong X, Huang J, et al. Global Challenges, 2019, 3(8), 1702149. 97 Kuang Y, Chen C, He S, et al. Advanced Materials, 2019, 31(23), 1900498. 98 Wu S, Xiong G, Yang H, et al. Advanced Energy Materials, 2019, 9(30), 1901286. 99 Yao H, Zhang P, Yang C, et al. Energy & Environmental Science, 2021, 14(10), 5330. 100 Xu N, Zhu P, Sheng Y, et al. Joule, 2020, 4(2), 347. 101 Li X, Min X, Li J, et al. Joule, 2018, 2(11), 2477.