Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21110219-6    https://doi.org/10.11896/cldb.21110219
  无机非金属及其复合材料 |
铁修饰二碲化钼吸附氮化物的气敏特性研究
张鹏军, 陈国祥*, 安国, 刘迎港
西安石油大学理学院,西安 710065
Gas-sensitive Characterization of Fe-modified Molybdenum Ditelluride Adsorbed Nitrides
ZHANG Pengjun, CHEN Guoxiang*, AN Guo, LIU Yinggang
School of Science, Xi’an Shiyou University, Xi’an 710065, China
下载:  全 文 ( PDF ) ( 5844KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用基于密度泛函理论的第一性原理计算方法,研究了毒害性气体NO、NO2和NH3在铁修饰MoTe2(Fe-MoTe2)单分子层上的吸附和传感行为,探究其作为电阻型化学气体传感器的潜力。首先,研究了Fe修饰在单层MoTe2上最稳定的几何构型和电子行为。结果表明,Fe原子掺杂剂可以稳定地吸附在单层MoTe2表面TMo处,修饰后体系的带隙减小并且电子密度增加,产生2.00 μB磁矩。其次,Fe-MoTe2对NO、NO2和NH3气体的吸附能分别达到了-3.13 eV、-2.27 eV和-1.19 eV,总态密度图(DOS)以及分波态密度图(PDOS)的分析验证了Fe原子修饰对气体吸附性能的影响。能带结构和差分电荷密度分析为Fe-MoTe2作为电阻型化学气体传感器提供了基本传感机理。最后,灵敏度分析表明Fe-MoTe2对NO2有非常好的响应(99.0%),对NO和NH3也有较好的响应。恢复行为表明Fe-MoTe2有作为NH3气体传感器和NO、NO2气体清除剂或存储材料的潜力。本工作为探索单层Fe-MoTe2作为传感材料或气体吸附材料提供了理论支持,扩展了基于TMDs的气体传感器在环境监测和治理领域中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏军
陈国祥
安国
刘迎港
关键词:  二碲化钼  修饰  气体吸附及传感  氮化物  第一性原理计算    
Abstract: In this work, the adsorption and sensing behaviors of toxic gases NO, NO2 and NH3 on Fe-modified MoTe2(Fe-MoTe2)monolayer had been studied by first-principles calculation method based on density functional theory, in order to explore their potential as resistive chemical gas sensors. Firstly, the most stable geometry and electron behaviors of Fe-modified monolayer MoTe2 were studied. The results show that Fe atom dopant can be stably adsorbed on TMo surface of monolayer MoTe2. After modification, the band gap of the modified system decreases and the electron density increases, resulting in 2.00 μB magnetic moment. Secondly, the adsorption energy of Fe-MoTe2 for NO, NO2 and NH3 gas reaches -3.13 eV, -2.27 eV and -1.19 eV, respectively. DOS and PDOS analyses verify the effect of Fe atom modification on gas adsorption performance. The band structure and charge density difference analysis provide the basic sensing mechanism for Fe-MoTe2 as a resistive chemical gas sensor. Finally, the sensitivity analysis shows that Fe-MoTe2 has a very good response to NO2 on 99.0%, and also has a excellent response to NO and NH3. The recovery behavior suggests that Fe-MoTe2 has potential as NH3 gas sensor and NO and NO2 gas scavenger or storage material. This work provides theoretical support for the exploration of monolayer Fe-MoTe2 as a sensing material or gas adsorption material, and extends the application of TMDs based gas sensors in the field of environmental monitoring and governance.
Key words:  molybdenum telluride    modification    gas adsorption and sensing    nitride    first-principles calculations
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  X701  
  O647.3  
  TB34  
基金资助: 国家自然科学基金(12004301);陕西省科学技术项目基金(2014JXX-70);西安石油大学研究生创新与实践能力培养项目基金(YCS21112084)
通讯作者:  * 陈国祥,西安石油大学理学院教授、硕士研究生导师。2007年陕西师范大学光学专业硕士毕业后到西安石油大学工作至今,2011年陕西师范大学声学专业博士毕业。目前主要从事低维材料掺杂改性及磁性机理、半导体功能材料光电特性的研究工作。发表论文50余篇,包括Physical Review B、Journal of Alloys and Compounds、Applied Surface Science、Vacuum等。guoxchen@xsyu.edu.cn   
作者简介:  张鹏军,2018年6月于兰州交通大学,获得工学学士学位。现为西安石油大学理学院硕士研究生,在陈国祥教授的指导下进行研究。目前主要从事二维材料修饰改性及气敏特性的研究。
引用本文:    
张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
ZHANG Pengjun, CHEN Guoxiang, AN Guo, LIU Yinggang. Gas-sensitive Characterization of Fe-modified Molybdenum Ditelluride Adsorbed Nitrides. Materials Reports, 2023, 37(12): 21110219-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110219  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21110219
1 Huang H H, Fan X, Singh D J, et al. Nanoscale, 2020, 12(3), 1185.
2 Li B L, Wang J, Zou H L, et al. Advanced Functional Materials, 2016, 26(39), 7034.
3 Zhao B, Shen D, Zhang Z, et al. Advanced Functional Materials, 2021, 31(48), 2105132.
4 Wu E, Yuan X, Yuan B, et al. ACS Sensors, 2018, 3(9), 1719.
5 Liu X, Li X, An M, et al. Electrochimica Acta, 2020, 10(351), 136249.
6 Li J, Liu X, Cui J, et al. ACS Applied Materials & Interfaces, 2015, 7(19), 10108.
7 Shao F, Hoffmann M, Prades J D, et al. Sensors & Actuators B Chemical, 2013, 181(5), 130.
8 Zhang D, Wu J, Peng L, et al. Journal of Materials Chemistry A, 2017, 5(39), 20666.
9 Cui H, Chen D, Zhang Y, et al. Sustainable Materials & Technologies, 2019, 20(4), e00094.
10 Ruppert C, Aslan O B, Heinz T F. Nano Letters, 2014, 14(11), 6231.
11 Lezama I G, Arora A, Ubaldini A, et al. Nano Letters, 2015, 15(4), 2336.
12 Dong H K, Cho S, Kim J H, et al. Nature Physics, 2015, 11(6), 482.
13 Duerloo K, Li Y, Reed E J. Nature Communications, 2014, 5(15), 4214.
14 Ma Y, Dai Y, Guo M, et al. Physical Chemistry Chemical Physics, 2011, 13(34), 15546.
15 Zhou Y, Reed E J. The Journal of Physical Chemistry C, 2015, 119(37), 21674.
16 Feng Z, Xie Y, Chen J, et al. 2D Materials, 2017, 4(2), 025018.
17 Wang D W, Wang X H, Yang A J, et al. IEEE Electron Device Letters, 2018, 2(39), 292.
18 Yagi Y, Briere T M, Sluiter M, et al. Physical Review B, 2004, 69(7), 428.
19 Lin S, Ye X, Johnson R S, et al. Journal of Physical Chemistry C, 2013, 117(33), 17319.
20 Yu W, Xu F, Xue B, et al. Nanoscale, 2014, 6(11), 5762.
21 Zhang D, Chang H, Sun Y, et al. Sensors & Actuators B Chemical, 2017, (252), 624.
22 Hu Y, Liu J, Cheng J, et al. Applied Surface Scienc, 2017, 427, 843.
23 Shi L B, Wang Y P, Dong H K, et al. Applied Surface Science, 2015, 329(28), 330.
24 Liu J, Ma Y, Journal of Materials Science, 2018, 53, 5114.
25 Kresse G, Hafner J. Physical Review B, 1994, 49(20), 14251.
26 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15.
27 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758.
28 Tang X, Sun W G, Gu Y T, et al. Physical Review B, 2019, 99(4), 045445.
29 Monkhorst H J, Pack J D. Physical Review B, 1976, 16(1748), 5188.
30 Wu Ping, Yin N, Li P, et al. Physical Chemistry Chemical Physics, 2017, 19(31), 20320.
31 Chen G X, Wang R X, Li H X, et al. Applied Physics A, 2021, 127(2), 133.
32 Henkelman G, Arnaldsson A, Jónson H. Computational Materials Science, 2006, 36(9), 354.
33 Li X G, Fry J N, Cheng H P. Physical Review B, 2014, 90(12), 125447.
34 Pyykko P, Atsumi M. Chemistry—A European Journal, 2009, 15(1), 186.
35 Lin S, Ye X, Johnson R S, et al. Journal of Physical Chemistry C, 2013, 117(33), 17319.
36 Dai X, Yang Z, Li A, et al. Superlattices and Microstructures, 2019, 130, 528.
37 Cui H, Yan C, Jia P, et al. Applied Surface Science, 2020, 512(7), 145759.
38 Rettner C T, Auerbach D J, Tully J C, et al. The Journal of Physical Chemistry, 1996, 100(31), 13021.
39 Hu Y, Long L, Mao Y, et al. Applied Surface Science, 2018, 442, 390.
40 Xiao Z, Wu W, Wu X, et al. Chemical Physics Letters, 2020, 755(6017), 137768.
41 Zhang X, Yu L, Wu X, et al. Advanced Science, 2015, 2(11), 612.
42 Sheng S L. Semiconductor physical electronics, Springer, New York, 2006, pp.363.
43 Schedin F, Geim A K, Morozov S V, et al. Nature Materials, 2007, 6(9), 652.
44 Zhang Y H, Chen Y B, Zhou K G, et al. Nanotechnology, 2009, 20(18), 185504.
[1] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[2] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[3] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[4] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[5] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[6] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[7] 张文君, 吕江维, 陈威, 王鹏光. 功能化SBA-15介孔二氧化硅的制备及在药物递送系统中的应用进展[J]. 材料导报, 2022, 36(18): 20080069-11.
[8] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[9] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[10] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[11] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[12] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[13] 宋扬, 刘丽华, 张中武. 钛微合金化低碳钢的研究进展[J]. 材料导报, 2021, 35(15): 15175-15182.
[14] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[15] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed