Abstract: In this work, the adsorption and sensing behaviors of toxic gases NO, NO2 and NH3 on Fe-modified MoTe2(Fe-MoTe2)monolayer had been studied by first-principles calculation method based on density functional theory, in order to explore their potential as resistive chemical gas sensors. Firstly, the most stable geometry and electron behaviors of Fe-modified monolayer MoTe2 were studied. The results show that Fe atom dopant can be stably adsorbed on TMo surface of monolayer MoTe2. After modification, the band gap of the modified system decreases and the electron density increases, resulting in 2.00 μB magnetic moment. Secondly, the adsorption energy of Fe-MoTe2 for NO, NO2 and NH3 gas reaches -3.13 eV, -2.27 eV and -1.19 eV, respectively. DOS and PDOS analyses verify the effect of Fe atom modification on gas adsorption performance. The band structure and charge density difference analysis provide the basic sensing mechanism for Fe-MoTe2 as a resistive chemical gas sensor. Finally, the sensitivity analysis shows that Fe-MoTe2 has a very good response to NO2 on 99.0%, and also has a excellent response to NO and NH3. The recovery behavior suggests that Fe-MoTe2 has potential as NH3 gas sensor and NO and NO2 gas scavenger or storage material. This work provides theoretical support for the exploration of monolayer Fe-MoTe2 as a sensing material or gas adsorption material, and extends the application of TMDs based gas sensors in the field of environmental monitoring and governance.
1 Huang H H, Fan X, Singh D J, et al. Nanoscale, 2020, 12(3), 1185. 2 Li B L, Wang J, Zou H L, et al. Advanced Functional Materials, 2016, 26(39), 7034. 3 Zhao B, Shen D, Zhang Z, et al. Advanced Functional Materials, 2021, 31(48), 2105132. 4 Wu E, Yuan X, Yuan B, et al. ACS Sensors, 2018, 3(9), 1719. 5 Liu X, Li X, An M, et al. Electrochimica Acta, 2020, 10(351), 136249. 6 Li J, Liu X, Cui J, et al. ACS Applied Materials & Interfaces, 2015, 7(19), 10108. 7 Shao F, Hoffmann M, Prades J D, et al. Sensors & Actuators B Chemical, 2013, 181(5), 130. 8 Zhang D, Wu J, Peng L, et al. Journal of Materials Chemistry A, 2017, 5(39), 20666. 9 Cui H, Chen D, Zhang Y, et al. Sustainable Materials & Technologies, 2019, 20(4), e00094. 10 Ruppert C, Aslan O B, Heinz T F. Nano Letters, 2014, 14(11), 6231. 11 Lezama I G, Arora A, Ubaldini A, et al. Nano Letters, 2015, 15(4), 2336. 12 Dong H K, Cho S, Kim J H, et al. Nature Physics, 2015, 11(6), 482. 13 Duerloo K, Li Y, Reed E J. Nature Communications, 2014, 5(15), 4214. 14 Ma Y, Dai Y, Guo M, et al. Physical Chemistry Chemical Physics, 2011, 13(34), 15546. 15 Zhou Y, Reed E J. The Journal of Physical Chemistry C, 2015, 119(37), 21674. 16 Feng Z, Xie Y, Chen J, et al. 2D Materials, 2017, 4(2), 025018. 17 Wang D W, Wang X H, Yang A J, et al. IEEE Electron Device Letters, 2018, 2(39), 292. 18 Yagi Y, Briere T M, Sluiter M, et al. Physical Review B, 2004, 69(7), 428. 19 Lin S, Ye X, Johnson R S, et al. Journal of Physical Chemistry C, 2013, 117(33), 17319. 20 Yu W, Xu F, Xue B, et al. Nanoscale, 2014, 6(11), 5762. 21 Zhang D, Chang H, Sun Y, et al. Sensors & Actuators B Chemical, 2017, (252), 624. 22 Hu Y, Liu J, Cheng J, et al. Applied Surface Scienc, 2017, 427, 843. 23 Shi L B, Wang Y P, Dong H K, et al. Applied Surface Science, 2015, 329(28), 330. 24 Liu J, Ma Y, Journal of Materials Science, 2018, 53, 5114. 25 Kresse G, Hafner J. Physical Review B, 1994, 49(20), 14251. 26 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15. 27 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758. 28 Tang X, Sun W G, Gu Y T, et al. Physical Review B, 2019, 99(4), 045445. 29 Monkhorst H J, Pack J D. Physical Review B, 1976, 16(1748), 5188. 30 Wu Ping, Yin N, Li P, et al. Physical Chemistry Chemical Physics, 2017, 19(31), 20320. 31 Chen G X, Wang R X, Li H X, et al. Applied Physics A, 2021, 127(2), 133. 32 Henkelman G, Arnaldsson A, Jónson H. Computational Materials Science, 2006, 36(9), 354. 33 Li X G, Fry J N, Cheng H P. Physical Review B, 2014, 90(12), 125447. 34 Pyykko P, Atsumi M. Chemistry—A European Journal, 2009, 15(1), 186. 35 Lin S, Ye X, Johnson R S, et al. Journal of Physical Chemistry C, 2013, 117(33), 17319. 36 Dai X, Yang Z, Li A, et al. Superlattices and Microstructures, 2019, 130, 528. 37 Cui H, Yan C, Jia P, et al. Applied Surface Science, 2020, 512(7), 145759. 38 Rettner C T, Auerbach D J, Tully J C, et al. The Journal of Physical Chemistry, 1996, 100(31), 13021. 39 Hu Y, Long L, Mao Y, et al. Applied Surface Science, 2018, 442, 390. 40 Xiao Z, Wu W, Wu X, et al. Chemical Physics Letters, 2020, 755(6017), 137768. 41 Zhang X, Yu L, Wu X, et al. Advanced Science, 2015, 2(11), 612. 42 Sheng S L. Semiconductor physical electronics, Springer, New York, 2006, pp.363. 43 Schedin F, Geim A K, Morozov S V, et al. Nature Materials, 2007, 6(9), 652. 44 Zhang Y H, Chen Y B, Zhou K G, et al. Nanotechnology, 2009, 20(18), 185504.