Abstract: Porous semiconductor materials with high specific surface area, preferential selectivity and microchannels for electrons/photons can improve the rate and efficiency of photocatalytic reactions and have shown important applications in adsorption and photocatalysis of the organic pollutants in wastewater. Porous semiconductors show some structural advantages in photochemistry, dynamics, and electronics: large pores can be used as guided channels for light propagation to increase the photon absorption efficiency, mesopores have specific selectivity for differential reactants and products in complex reaction systems, and micropores can provide microscopic paths for photogenerated carriers conduction and migration. Structural defects have previously been considered as disadvantages in photocatalytic reactions, resulting in the recombination of electron-hole pairs and decrease in lifetime of photogenerated carriers and photocatalytic efficiency. In recent years, some researchers explore that the introduction of defective sites can further optimize the microstructure and properties of porous materials and the structural defects can supply more spaces for reactions and more reactive sites for photocatalysis. The porous structure and defective sites of semiconductor materials promote coordinated photocatalytic processes, and the porosities and defects play important roles in photocatalytic decontamination. In this review, synthesis of porous semiconductor micro/nanostructures, design for defective sites,effects on oxygen storage and electron migration by porous defect structures and photodegradation mechanism of organic pollutants are briefly summarized. It is possible to predict that porous materials assisted in defect structures will be competitive candidates for semiconductor photocatalysts. The negative effect of structural defects as recombination centers of photoinduced carriers is an urgent problem to be solved. It can be predicted the prospects of photocatalytic materials with porous and defective structures are promising, and some novel ideas have been provided to design highly reactive photocatalysts for excellent photodegradation of organic pollutants in wastewater.
1 Zhang Z, Zhao K, Li X, et al. Journal of Materials Science, 2020, 55, 997. 2 Tho N T M, Huy B T, Khanh D N N, et al. Topics in Catalysis, 2020, 63, 1157. 3 Wu Q W, Zhu Y Y. Modern Chemical Research, 2021, 80(3), 143 (in Chinese). 吴乾威, 祝媛媛. 当代化工研究, 2021, 80(3), 143. 4 Bian Z F, Cao F L, Zhu J, et al. Environmental Science Technology, 2015, 49, 2418. 5 Li J, Kalam A, Al-Shihri A S, et al. Materials Chemistry and Physics, 2011, 130, 1066. 6 Chauhan S, Anand C, Tripathi B, et al. Journal of Materials Science: Materials in Electronics, 2020, 31, 20191. 7 Li J, Liu L, Yuan Z Y. In:New and future developments in catalysis: solar photocatalysis, Suib S L, ed., Elsevier, Amsterdam, 2013, pp. 417. 8 Yuan Z Y, Su B L. Journal of Materials Chemistry, 2006, 16, 663. 9 Wang X C, Yu J C, Ho C M, et al. Langmuir, 2005, 21, 2552. 10 Zhang H M, Liu P R, Wang H J, et al. Langmuir, 2010, 26, 1574. 11 Wang D A, Liu L F. Chemistry of Materials, 2010, 22, 6656. 12 Karunamoorthy S, Velluchamy M. Journal of Materials Science: Materials in Electronics, 2018, 29, 20367. 13 Zhang L W, Fu H B, Zhu Y F. Advanced Functional Materials, 2008, 18, 2180. 14 Wu D D, Bao Y, Ma J Z, et al. Journal of the Chinese Ceramic Society, 2016, 44(5), 720 (in Chinese). 吴朵朵, 鲍艳, 马建中, 等. 硅酸盐学报, 2016, 44(5), 720. 15 Lightcap I V, Kosel T H, Kamat P V. Nano Letters, 2010, 10, 577. 16 Manga K K, Zhou Y, Yan Y L, et al. Advanced Functional Materials, 2009, 19, 3638. 17 Peng W, Wang Z, Yoshizawa N. Journal of Materials Chemistry, 2010, 20, 2424. 18 Guo Y, Wang H S, He C L. Langmuir, 2009, 25, 4678. 19 Hu Y, Gao X H, Yu L, et al. Angewandte Chemie International Edition, 2013, 52, 5636. 20 Yang G D, Yang B L, Xiao T C, et al. Applied Surface Science, 2013, 283, 402. 21 Schneider J, Matsuoka M, Takeuchi M, et al. Chemical Reviews, 2014, 114, 9919. 22 Zhang N, Gao C, Xiong Y J. Energy Chemistry, 2019, 37, 43. 23 Dadeviren O E, Glass D, Sapienza R, et al. Nano Letters, 2021, 21, 8348. 24 Zhou W, Fu H G. Inorganic Chemistry Frontiers, 2018, 5, 1240. 25 Wang F F, Ge W N, Shen T, et al. Applied Surface Science, 2017, 410, 513. 26 Rong W, Zhang W, Zhu W, et al. Chemical Engineering Journal, 2018, 348, 292. 27 Yu X M, Kim B, Kim Y K. ACS Catalysis, 2013, 3, 2479. 28 Hailili R, Wang Z Q, Gong X Q, et al. Applied Catalysis B-Environmental, 2019, 254, 86. 29 Fang Z L, Bueken B, Vos D E D, et al. Angewandte Chemie International Edition, 2015, 54, 7234. 30 Senthamizhan A, Balusamy B, Aytac Z, et al. CrystEngComm, 2016, 18, 6341. 31 Liang Y C, Chung C C, Lin T Y, et al. Journal of Alloys and Compounds, 2016, 688, 769. 32 Liu H P, Liang J, Shao L, et al. Colloid and Surface A-Physicochemical and Engineering Aspects, 2020, 594, 124668. 33 Yan J P, Wu G J, Guan N J, et al. Physical Chemistry Chemical Physics, 2013, 15, 10978. 34 Penn R L, Banfield J F. Science, 1998, 281, 969. 35 Zhang J, Lin Z, Lan Y Z, et al. Journal of the American Chemical Society, 2006, 128, 12981. 36 Xu H L, Wang W Z, Zhu W, et al. Crystal Growth & Design, 2007, 7, 2720. 37 Pacholski C, Dipllng K A, Weller H. Angewandte Chemie International Edition, 2002, 41, 1188. 38 Lou X W, Zeng H C. Journal of the American Chemical Society, 2003, 125, 2697. 39 Ren T Z, Yuan Z Y, Hu W K, et al. Microporous and Mesoporous Materials, 2008, 112, 467. 40 Park S, Lim J H, Chung S W, et al. Science, 2004, 303, 348. 41 Forticaux A, Hacialioglu S, DeGrave J, et al. ACS Nano, 2013, 7, 8224. 42 Xiao H Y, Ai Z H, Zhang L Z. Journal of Physical Chemistry C, 2009, 113, 16625. 43 Serpone N, Emeline A V, Ryabchuk V K, et al. ACS Energy Letters, 2016, 1, 931. 44 Lordi V, Erhart P, Aberg D. Physical Review B: Condensed Matter and Materials Physics, 2010, 81, 235204. 45 Chen X, Liu L, Yu P Y, et al. Science, 2011, 331, 746. 46 Kong M, Li Y Z, Chen X, et al. Journal of the American Chemical Society, 2011, 133, 16414. 47 Zhang N, Li X, Ye H, et al. Journal of the American Chemical Society, 2016, 138, 8928. 48 Nowotny M K, Sheppard L R, Bak T, et al. Journal of Physical Chemistry C, 2008, 112, 5275. 49 Fan J C, Sreekanth K M, Xie Z, et al. Progress in Materials Science, 2013, 58, 874. 50 Wang M, Tan G, Zhang D, et al. Applied Catalysis B-Environmental, 2019, 254, 98. 51 Bessergenev V G, Burkel E. In:Encyclopedia of nanotechnology, Bhushan B, ed., Springer, Dordrecht, 2016, pp, 100951. 52 Cui H N, Liu H, Shi J Y, et al. International Journal of Photoenergy, 2013, 2013, 363802. 53 Xin X Y, Xu T, Yin J, et al. Applied Catalysis B-Environmental, 2015, 176-177, 354. 54 Hu C G, Zhang Z W, Liu H, et al. Nanotechnology, 2006, 17, 5983. 55 Hu C G, Xi Y, Liu H, et al. Journal of Materials Chemistry, 2009, 19, 858. 56 Li J, Su Q M, Du G H. Materials Letters, 2012, 84, 97. 57 Wu Y. Catalytic chemistry, Science Press, China, 1998, pp. 776 (in Chinese). 吴越. 催化化学, 科学出版社, 1998, pp. 776. 58 He J Y, Peng D J, Wang Y W, et al. Acta Physica Sinca, 2018, 67(6), 183 (in Chinese). 何金云, 彭代江, 王燕舞, 等. 物理学报, 2018, 67(6), 183. 59 Xiong S L, Xi B J, Qia Y T. Journal of Physical Chemistry C, 2010, 114, 14029. 60 Yao W T, Yu S H, Zhou Y, et al. Journal of Physical Chemistry B, 2005, 109, 14011. 61 Zhang H, Cao J L, Shao G S, et al. Journal of Materials Chemistry, 2009, 19, 6097. 62 Su M Z. Introduction to solid chemistry, Beijing University Press, China, 1986, pp.106 (in Chinese). 苏勉曾. 固体化学导论, 北京大学出版社, 1986, pp.106. 63 Zhang H G, Zhao L, Wang L, et al. Journal of Materials Science, 2020, 55, 10785. 64 Zhang L, Yu W, Han C, et al. Journal of the Electrochemical Society, 2017, 164, H651. 65 Pawsey S, Kalebaila K K, Moudrakovski I, et al. Journal of Physical Chemistry C, 2010, 114, 13187. 66 Janczarek M, Endo-Kimura M, Raja-Mogan T, et al. In: green photoca-talytic semiconductors, green chemistry and sustainable technology, Garg S, Chandra A, ed., Springer, Cham, 2022, pp.337. 67 Chen P, Liu H J, Cui W, et al. EcoMat-Functional Materials for Green Energy and Environment, 2020, 2, e12047. 68 Ai M, Zhang J, Wu Y, et al. Chemistry-An Asian Journal, 2020, 15, 3599. 69 Rupp F, Haupt M, Eichler M, et al. Journal of Dental Research, 2011, 91, 104. 70 Lan K, Wang R C, Wei Q L, et al. Angewandte Chemie International Edition, 2020, 59, 17676. 71 Tang J L, Liu Y S, Hu Y J, et al. Chemistry-A European Journal, 2017, 24, 4390. 72 Singh N, Prakash J, Misra M, et al. ACS Applied Materials & Interface, 2017, 9, 28495. 73 Wang W, Tadé M O, Shao Z P. Progress in Materials Science, 2018, 92, 33. 74 Li D M, Yang L, Wang Z L, et al. Journal of Functional Materials, 2022, 53(1), 1009 (in Chinese). 李冬梅, 杨磊, 王梓良, 等. 功能材料, 2022, 53(1), 1009. 75 Tan M, Fang Z J, Wang D, et al. Journal of Atomic and Molecular Phy-sics, 2022, 39(3), 172 (in Chinese). 谭敏, 方志杰, 王栋, 等. 原子与分子物理学报, 2022, 39(3), 172. 76 Guo H L, Zhu Q, Wu X L, et al. Nanoscale, 2015, 7, 7216. 77 Xu Q, Li E, Zhao R, et al. Journal of Polymer Research, 2020, 27, 186. 78 Zhao L, Xie Y Z, Chen R H, et al. Journal of Synthetic Crystals, 2018, 47(12), 2663 (in Chinese). 赵林, 谢艳招, 陈日华, 等. 人工晶体学报, 2018, 47(12), 2663. 79 Xia J, Chai L L, Tian T, et al. Powder Technology, 2020, 373, 488. 80 Azimi E B, Badiei A, Ghasemi J B. Applied Surface Science, 2019, 469, 236. 81 Jin X, Guan Q, Tian T, et al. Applied Surface Science, 2019, 504, 144241. 82 Sachs M, Park J S, Pastor E, et al. Chemical Science, 2019, 10, 5667. 83 Liu G, Zhen C, Kang Y, et al. Chemical Society Reviews, 2018, 47, 6410. 84 Zhu Y P, Li J, Ma T Y, et al. Journal of Materials Chemistry A, 2014, 2, 1093. 85 Guo Q, Zhou C Y, Ma Z B, et al. In:Heterogeneous photocatalysis, green chemistry and sustainable technology, Colmenares J, Xu Y J, ed., Springer, Berlin, Heidelberg, 2016, pp.361. 86 Gade R, Ahemed J, Yanapu K L, et al. Journal of Environmental Che-mical Engineering, 2018, 6, 4504. 87 Li J, Yang Y Q, Du G H, et al. Materials Reports B:Research Paper, 2010, 24(12), 83 (in Chinese). 李洁, 杨永强, 杜高辉, 等. 材料导报:研究篇, 2010, 24 (12), 83. 88 Lin C H, Wong D S H, Lu S Y. ACS Applied Materials & Interface, 2014, 6, 16669. 89 Zhang Q, Lima D Q, Lee I, et al. Angewandte Chemie International Edition, 2011, 50, 7088. 90 Chen C F, Li M R, Jia Y S, et al. Journal of Colloid and Interface Science, 2020, 564, 442. 91 Marschall R. Advanced Functional Materials, 2013, 24, 2421. 92 Li J R, Zhang W D, Ran M X, et al. Applied Catalysis B-Environmental, 2019, 243, 313. 93 Wilker M B, Schnitzenbaumer K J, Dukovic G. Israel Journal of Chemistry, 2012, 52, 1002. 94 Kubacka A, Fernandez-Garcia M, Colon G. Chemical Reviews, 2012, 112, 1555. 95 Liu X J, Pan L K, Lv T, et al. Journal of Alloys and Compounds, 2014, 583, 390. 96 Li Y K. Photocorrosion and photocatalytic properties of CdS/ZnO/TiO2 composite structures. Ph. D. Thesis, Harbin Institute of Technology, China, 2017 (in Chinese). 李易昆. CdS/ZnO/TiO2复合结构光腐蚀及光催化性能研究. 博士学位论文, 哈尔滨工业大学, 2017. 97 Bao N, Li Y, Wei Z T, et al. Journal of Physical Chemistry C, 2011, 115, 5708. 98 Klabunde K J, Erickson L, Koper O, et al. ACS Symposium Series, 2010, 1045, 1. 99 Diuristic A B, Leung Y H, Ng A M C. Materials Horizons, 2014, 1, 400. 100 Huda M N, Yan Y F, Moon C Y, et al. Physical Review B, 2008, 77, 195102. 101 Li J. Mesoporous metal sulfide nanocrystal assembly and their composite materials: synthesis and photocatalysis. Ph. D. Thesis, Nankai University, China, 2014 (in Chinese). 李洁. 介孔金属硫化物纳米晶自组装材料及其复合物的合成与光催化性能. 博士学位论文, 南开大学, 2014.