Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21110143-9    https://doi.org/10.11896/cldb.21110143
  无机非金属及其复合材料 |
多孔富缺陷半导体应用于光催化降解废水有机污染物
李洁*
福建省农业科学院农业工程技术研究所,福州 350003
Porous Defective Semiconductor for Photocatalytic Degradation of Organic Pollution in Wastewater
LI Jie*
Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
下载:  全 文 ( PDF ) ( 12842KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔半导体材料具有大的比表面积、反应物与产物的择优选择性、光子与电子的传输微通道,极利于促进光催化反应进程,提升催化效率,在废水有机物的吸附与光催化方面有着重要应用。多孔半导体独特的结构在废水有机物处理过程中可发挥出光化学、动力学及电子学上的优势:大孔结构可作为光扩散与传输路径增加光子的吸收率;介孔孔道对物质具备特定的选择性,对复杂反应体系显得尤为重要;微孔能为电荷传导与迁移提供微观通路。结构缺陷以往被认为是光催化反应中的不利因素,会成为电子-空穴对的复合中心,缩短光生载流子的寿命,降低反应效率。近来研究者提出了新观点:结构缺陷能为光催化过程提供更多的反应场所和活性位点,表面缺陷的储氧作用可促进光催化氧化反应进程,晶格缺陷可作为光生电子迁移的微观通道。将缺陷位引入多孔构架设计成多孔缺陷结构,缺陷位的引入可显著增强多孔结构的光电及催化性能,在废水有机物光催化反应中突显出储氧作用、载流子分离与传输效应及优良的的催化性能。半导体多孔结构协同缺陷活性位极大地促进了光催化反应进程,提升了废水有机物光催化氧化分解效率,缺陷活性位与多孔结构相结合将是光催化剂设计的一个新方向。本文概述了多孔半导体材料在光催化反应中的结构优势、多孔半导体微纳结构的“导向合成”与缺陷位设计、多孔缺陷半导体在光降解废水有机物过程中的光电效应及作用机制,并提出结构缺陷作为光生载流子复合中心的负面效应是应用研究中需要克服的问题,分析及展望了多孔缺陷结构光催化剂的应用前景,为制备高效降解废水有机物的高活性光催化材料提供设计思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李洁
关键词:  多孔半导体  缺陷活性位  导向连接  储氧作用  电荷传输  废水有机物  光催化机理    
Abstract: Porous semiconductor materials with high specific surface area, preferential selectivity and microchannels for electrons/photons can improve the rate and efficiency of photocatalytic reactions and have shown important applications in adsorption and photocatalysis of the organic pollutants in wastewater. Porous semiconductors show some structural advantages in photochemistry, dynamics, and electronics: large pores can be used as guided channels for light propagation to increase the photon absorption efficiency, mesopores have specific selectivity for differential reactants and products in complex reaction systems, and micropores can provide microscopic paths for photogenerated carriers conduction and migration. Structural defects have previously been considered as disadvantages in photocatalytic reactions, resulting in the recombination of electron-hole pairs and decrease in lifetime of photogenerated carriers and photocatalytic efficiency. In recent years, some researchers explore that the introduction of defective sites can further optimize the microstructure and properties of porous materials and the structural defects can supply more spaces for reactions and more reactive sites for photocatalysis. The porous structure and defective sites of semiconductor materials promote coordinated photocatalytic processes, and the porosities and defects play important roles in photocatalytic decontamination. In this review, synthesis of porous semiconductor micro/nanostructures, design for defective sites,effects on oxygen storage and electron migration by porous defect structures and photodegradation mechanism of organic pollutants are briefly summarized. It is possible to predict that porous materials assisted in defect structures will be competitive candidates for semiconductor photocatalysts. The negative effect of structural defects as recombination centers of photoinduced carriers is an urgent problem to be solved. It can be predicted the prospects of photocatalytic materials with porous and defective structures are promising, and some novel ideas have been provided to design highly reactive photocatalysts for excellent photodegradation of organic pollutants in wastewater.
Key words:  porous semiconductor    defective sites    guided connection    oxygen storage    electron transmission    sewage organics    photocatalytic mechanism
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  O643  
  TQ426  
基金资助: 福建省自然科学基金青年科技人才创新项目(2019J05142);福建省农业科学院博士科研启动基金项目(DC2018-6)
通讯作者:  * 李洁,2014年6月毕业于南开大学,获得材料物理与化学专业工学博士学位,同年进入南开大学博士后流动工作站从事纳米催化材料电镜微结构研究。2016年11月被聘为福建省农业科学院农业工程技术研究所副研究员,从事环污治理与农产品营养素开发相关纳米材料及机制研究,以第一作者在Journal of Materials Chemistry A、Scienti-fic Reports、Materials Chemistry and Physics等国内外学术期刊上发表论文多篇,参编英文著作1部、中文著作2部,获授权国家发明专利4项。lijie282008@yeah.net   
引用本文:    
李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J]. 材料导报, 2023, 37(12): 21110143-9.
LI Jie. Porous Defective Semiconductor for Photocatalytic Degradation of Organic Pollution in Wastewater. Materials Reports, 2023, 37(12): 21110143-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110143  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21110143
1 Zhang Z, Zhao K, Li X, et al. Journal of Materials Science, 2020, 55, 997.
2 Tho N T M, Huy B T, Khanh D N N, et al. Topics in Catalysis, 2020, 63, 1157.
3 Wu Q W, Zhu Y Y. Modern Chemical Research, 2021, 80(3), 143 (in Chinese).
吴乾威, 祝媛媛. 当代化工研究, 2021, 80(3), 143.
4 Bian Z F, Cao F L, Zhu J, et al. Environmental Science Technology, 2015, 49, 2418.
5 Li J, Kalam A, Al-Shihri A S, et al. Materials Chemistry and Physics, 2011, 130, 1066.
6 Chauhan S, Anand C, Tripathi B, et al. Journal of Materials Science: Materials in Electronics, 2020, 31, 20191.
7 Li J, Liu L, Yuan Z Y. In:New and future developments in catalysis: solar photocatalysis, Suib S L, ed., Elsevier, Amsterdam, 2013, pp. 417.
8 Yuan Z Y, Su B L. Journal of Materials Chemistry, 2006, 16, 663.
9 Wang X C, Yu J C, Ho C M, et al. Langmuir, 2005, 21, 2552.
10 Zhang H M, Liu P R, Wang H J, et al. Langmuir, 2010, 26, 1574.
11 Wang D A, Liu L F. Chemistry of Materials, 2010, 22, 6656.
12 Karunamoorthy S, Velluchamy M. Journal of Materials Science: Materials in Electronics, 2018, 29, 20367.
13 Zhang L W, Fu H B, Zhu Y F. Advanced Functional Materials, 2008, 18, 2180.
14 Wu D D, Bao Y, Ma J Z, et al. Journal of the Chinese Ceramic Society, 2016, 44(5), 720 (in Chinese).
吴朵朵, 鲍艳, 马建中, 等. 硅酸盐学报, 2016, 44(5), 720.
15 Lightcap I V, Kosel T H, Kamat P V. Nano Letters, 2010, 10, 577.
16 Manga K K, Zhou Y, Yan Y L, et al. Advanced Functional Materials, 2009, 19, 3638.
17 Peng W, Wang Z, Yoshizawa N. Journal of Materials Chemistry, 2010, 20, 2424.
18 Guo Y, Wang H S, He C L. Langmuir, 2009, 25, 4678.
19 Hu Y, Gao X H, Yu L, et al. Angewandte Chemie International Edition, 2013, 52, 5636.
20 Yang G D, Yang B L, Xiao T C, et al. Applied Surface Science, 2013, 283, 402.
21 Schneider J, Matsuoka M, Takeuchi M, et al. Chemical Reviews, 2014, 114, 9919.
22 Zhang N, Gao C, Xiong Y J. Energy Chemistry, 2019, 37, 43.
23 Dadeviren O E, Glass D, Sapienza R, et al. Nano Letters, 2021, 21, 8348.
24 Zhou W, Fu H G. Inorganic Chemistry Frontiers, 2018, 5, 1240.
25 Wang F F, Ge W N, Shen T, et al. Applied Surface Science, 2017, 410, 513.
26 Rong W, Zhang W, Zhu W, et al. Chemical Engineering Journal, 2018, 348, 292.
27 Yu X M, Kim B, Kim Y K. ACS Catalysis, 2013, 3, 2479.
28 Hailili R, Wang Z Q, Gong X Q, et al. Applied Catalysis B-Environmental, 2019, 254, 86.
29 Fang Z L, Bueken B, Vos D E D, et al. Angewandte Chemie International Edition, 2015, 54, 7234.
30 Senthamizhan A, Balusamy B, Aytac Z, et al. CrystEngComm, 2016, 18, 6341.
31 Liang Y C, Chung C C, Lin T Y, et al. Journal of Alloys and Compounds, 2016, 688, 769.
32 Liu H P, Liang J, Shao L, et al. Colloid and Surface A-Physicochemical and Engineering Aspects, 2020, 594, 124668.
33 Yan J P, Wu G J, Guan N J, et al. Physical Chemistry Chemical Physics, 2013, 15, 10978.
34 Penn R L, Banfield J F. Science, 1998, 281, 969.
35 Zhang J, Lin Z, Lan Y Z, et al. Journal of the American Chemical Society, 2006, 128, 12981.
36 Xu H L, Wang W Z, Zhu W, et al. Crystal Growth & Design, 2007, 7, 2720.
37 Pacholski C, Dipllng K A, Weller H. Angewandte Chemie International Edition, 2002, 41, 1188.
38 Lou X W, Zeng H C. Journal of the American Chemical Society, 2003, 125, 2697.
39 Ren T Z, Yuan Z Y, Hu W K, et al. Microporous and Mesoporous Materials, 2008, 112, 467.
40 Park S, Lim J H, Chung S W, et al. Science, 2004, 303, 348.
41 Forticaux A, Hacialioglu S, DeGrave J, et al. ACS Nano, 2013, 7, 8224.
42 Xiao H Y, Ai Z H, Zhang L Z. Journal of Physical Chemistry C, 2009, 113, 16625.
43 Serpone N, Emeline A V, Ryabchuk V K, et al. ACS Energy Letters, 2016, 1, 931.
44 Lordi V, Erhart P, Aberg D. Physical Review B: Condensed Matter and Materials Physics, 2010, 81, 235204.
45 Chen X, Liu L, Yu P Y, et al. Science, 2011, 331, 746.
46 Kong M, Li Y Z, Chen X, et al. Journal of the American Chemical Society, 2011, 133, 16414.
47 Zhang N, Li X, Ye H, et al. Journal of the American Chemical Society, 2016, 138, 8928.
48 Nowotny M K, Sheppard L R, Bak T, et al. Journal of Physical Chemistry C, 2008, 112, 5275.
49 Fan J C, Sreekanth K M, Xie Z, et al. Progress in Materials Science, 2013, 58, 874.
50 Wang M, Tan G, Zhang D, et al. Applied Catalysis B-Environmental, 2019, 254, 98.
51 Bessergenev V G, Burkel E. In:Encyclopedia of nanotechnology, Bhushan B, ed., Springer, Dordrecht, 2016, pp, 100951.
52 Cui H N, Liu H, Shi J Y, et al. International Journal of Photoenergy, 2013, 2013, 363802.
53 Xin X Y, Xu T, Yin J, et al. Applied Catalysis B-Environmental, 2015, 176-177, 354.
54 Hu C G, Zhang Z W, Liu H, et al. Nanotechnology, 2006, 17, 5983.
55 Hu C G, Xi Y, Liu H, et al. Journal of Materials Chemistry, 2009, 19, 858.
56 Li J, Su Q M, Du G H. Materials Letters, 2012, 84, 97.
57 Wu Y. Catalytic chemistry, Science Press, China, 1998, pp. 776 (in Chinese).
吴越. 催化化学, 科学出版社, 1998, pp. 776.
58 He J Y, Peng D J, Wang Y W, et al. Acta Physica Sinca, 2018, 67(6), 183 (in Chinese).
何金云, 彭代江, 王燕舞, 等. 物理学报, 2018, 67(6), 183.
59 Xiong S L, Xi B J, Qia Y T. Journal of Physical Chemistry C, 2010, 114, 14029.
60 Yao W T, Yu S H, Zhou Y, et al. Journal of Physical Chemistry B, 2005, 109, 14011.
61 Zhang H, Cao J L, Shao G S, et al. Journal of Materials Chemistry, 2009, 19, 6097.
62 Su M Z. Introduction to solid chemistry, Beijing University Press, China, 1986, pp.106 (in Chinese).
苏勉曾. 固体化学导论, 北京大学出版社, 1986, pp.106.
63 Zhang H G, Zhao L, Wang L, et al. Journal of Materials Science, 2020, 55, 10785.
64 Zhang L, Yu W, Han C, et al. Journal of the Electrochemical Society, 2017, 164, H651.
65 Pawsey S, Kalebaila K K, Moudrakovski I, et al. Journal of Physical Chemistry C, 2010, 114, 13187.
66 Janczarek M, Endo-Kimura M, Raja-Mogan T, et al. In: green photoca-talytic semiconductors, green chemistry and sustainable technology, Garg S, Chandra A, ed., Springer, Cham, 2022, pp.337.
67 Chen P, Liu H J, Cui W, et al. EcoMat-Functional Materials for Green Energy and Environment, 2020, 2, e12047.
68 Ai M, Zhang J, Wu Y, et al. Chemistry-An Asian Journal, 2020, 15, 3599.
69 Rupp F, Haupt M, Eichler M, et al. Journal of Dental Research, 2011, 91, 104.
70 Lan K, Wang R C, Wei Q L, et al. Angewandte Chemie International Edition, 2020, 59, 17676.
71 Tang J L, Liu Y S, Hu Y J, et al. Chemistry-A European Journal, 2017, 24, 4390.
72 Singh N, Prakash J, Misra M, et al. ACS Applied Materials & Interface, 2017, 9, 28495.
73 Wang W, Tadé M O, Shao Z P. Progress in Materials Science, 2018, 92, 33.
74 Li D M, Yang L, Wang Z L, et al. Journal of Functional Materials, 2022, 53(1), 1009 (in Chinese).
李冬梅, 杨磊, 王梓良, 等. 功能材料, 2022, 53(1), 1009.
75 Tan M, Fang Z J, Wang D, et al. Journal of Atomic and Molecular Phy-sics, 2022, 39(3), 172 (in Chinese).
谭敏, 方志杰, 王栋, 等. 原子与分子物理学报, 2022, 39(3), 172.
76 Guo H L, Zhu Q, Wu X L, et al. Nanoscale, 2015, 7, 7216.
77 Xu Q, Li E, Zhao R, et al. Journal of Polymer Research, 2020, 27, 186.
78 Zhao L, Xie Y Z, Chen R H, et al. Journal of Synthetic Crystals, 2018, 47(12), 2663 (in Chinese).
赵林, 谢艳招, 陈日华, 等. 人工晶体学报, 2018, 47(12), 2663.
79 Xia J, Chai L L, Tian T, et al. Powder Technology, 2020, 373, 488.
80 Azimi E B, Badiei A, Ghasemi J B. Applied Surface Science, 2019, 469, 236.
81 Jin X, Guan Q, Tian T, et al. Applied Surface Science, 2019, 504, 144241.
82 Sachs M, Park J S, Pastor E, et al. Chemical Science, 2019, 10, 5667.
83 Liu G, Zhen C, Kang Y, et al. Chemical Society Reviews, 2018, 47, 6410.
84 Zhu Y P, Li J, Ma T Y, et al. Journal of Materials Chemistry A, 2014, 2, 1093.
85 Guo Q, Zhou C Y, Ma Z B, et al. In:Heterogeneous photocatalysis, green chemistry and sustainable technology, Colmenares J, Xu Y J, ed., Springer, Berlin, Heidelberg, 2016, pp.361.
86 Gade R, Ahemed J, Yanapu K L, et al. Journal of Environmental Che-mical Engineering, 2018, 6, 4504.
87 Li J, Yang Y Q, Du G H, et al. Materials Reports B:Research Paper, 2010, 24(12), 83 (in Chinese).
李洁, 杨永强, 杜高辉, 等. 材料导报:研究篇, 2010, 24 (12), 83.
88 Lin C H, Wong D S H, Lu S Y. ACS Applied Materials & Interface, 2014, 6, 16669.
89 Zhang Q, Lima D Q, Lee I, et al. Angewandte Chemie International Edition, 2011, 50, 7088.
90 Chen C F, Li M R, Jia Y S, et al. Journal of Colloid and Interface Science, 2020, 564, 442.
91 Marschall R. Advanced Functional Materials, 2013, 24, 2421.
92 Li J R, Zhang W D, Ran M X, et al. Applied Catalysis B-Environmental, 2019, 243, 313.
93 Wilker M B, Schnitzenbaumer K J, Dukovic G. Israel Journal of Chemistry, 2012, 52, 1002.
94 Kubacka A, Fernandez-Garcia M, Colon G. Chemical Reviews, 2012, 112, 1555.
95 Liu X J, Pan L K, Lv T, et al. Journal of Alloys and Compounds, 2014, 583, 390.
96 Li Y K. Photocorrosion and photocatalytic properties of CdS/ZnO/TiO2 composite structures. Ph. D. Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
李易昆. CdS/ZnO/TiO2复合结构光腐蚀及光催化性能研究. 博士学位论文, 哈尔滨工业大学, 2017.
97 Bao N, Li Y, Wei Z T, et al. Journal of Physical Chemistry C, 2011, 115, 5708.
98 Klabunde K J, Erickson L, Koper O, et al. ACS Symposium Series, 2010, 1045, 1.
99 Diuristic A B, Leung Y H, Ng A M C. Materials Horizons, 2014, 1, 400.
100 Huda M N, Yan Y F, Moon C Y, et al. Physical Review B, 2008, 77, 195102.
101 Li J. Mesoporous metal sulfide nanocrystal assembly and their composite materials: synthesis and photocatalysis. Ph. D. Thesis, Nankai University, China, 2014 (in Chinese).
李洁. 介孔金属硫化物纳米晶自组装材料及其复合物的合成与光催化性能. 博士学位论文, 南开大学, 2014.
[1] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[2] 茹鹏斌, 毕恩兵, 陈汉. 无机电荷传输层界面修饰制备稳定钙钛矿太阳能电池[J]. 材料导报, 2020, 34(18): 18003-18008.
[3] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[4] 罗军, 沈晓楠, 庞盼, 廖斌, 吴先映, 张旭. MEVVA离子注入铁镍银对DSSCs光电性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 1-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed