Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20070237-8    https://doi.org/10.11896/cldb.20070237
  无机非金属及其复合材料 |
生物质供氢体协助低变质煤加氢热解提质的研究进展
周晶晶1, 周军1,2,*, 吴雷1,2,*, 杨茸茸1, 宋永辉2,3, 张秋利1,2
1 西安建筑科技大学化学与化工学院,西安 710055
2 陕西省冶金工程技术研究中心,西安 710055
3 西安建筑科技大学冶金工程学院,西安 710055
Research Progress of Hydrogenated Pyrolysis of Low-rank Coal Assisted by Biomass Hydrogen-donor
ZHOU Jingjing1, ZHOU Jun1,2,*, WU Lei1,2,*, YANG Rongrong1, SONG Yonghui2,3, ZHANG Qiuli1,2
1 School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Province Metallurgical Engineering and Technology Research Centre, Xi'an 710055, China
3 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 5204KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤炭在我国能源结构中占据着举足轻重的地位,但其主流利用方式存在较大的能源浪费和环境污染等问题。生物质作为绿色可再生能源,具有廉价、挥发分高、氢碳比高等特点,但由于缺乏合理的有效利用,导致生物质中大量的氢组分被低端消费,造成不必要的资源浪费。将低变质煤与生物质共热解,不仅改善了低变质煤的热解特性,提高了热解产品收率和质量,而且充分利用了生物质资源,缓解了环境污染,实现低变质煤资源和生物质资源高效清洁分级提质利用的“双赢”。
目前,国内外在低变质煤和生物质共热解领域的研究主要集中在热解工艺优化、热解产品分布规律、共热解协同机制等方面。大量研究结果表明,热解温度、升温速率、生物质组成等因素会对共热解产物分布、产物收率及质量产生影响。此外,与传统热解相比,新型热解方式(如微波热解、红外热解等)均能显著提高热解效率,有效改善热解产物收率和质量,已引起国内外学者的高度关注。
本文全面分析了农林产物、藻类、禽畜产物、城市垃圾等四类不同生物质供氢体协助低变质煤加氢热解反应的产物特性,探讨了共热解过程中碱金属的催化作用、自由基反应和挥发分的二次反应等协同作用机制,介绍了新型微波热解、红外热解技术进展及特性。最后,展望了生物质供氢体协助低变质煤加氢共热解的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周晶晶
周军
吴雷
杨茸茸
宋永辉
张秋利
关键词:  低变质煤  生物质供氢体  加氢热解  热解方式  增效提质    
Abstract: Coal resource plays a crucial role in energy structure of China, but the utilization of low-rank coal meets some great challenges, such as energy waste, environmental pollution, etc. As a green renewable energy, biomass has some advantages of low-cost, high volatile and high H/C ratio. However, lots of hydrogen components in biomass are consumed via low-end utilization, resulting in the resource waste. The co-pyrolysis of low-rank coal and biomass not only changes the characteristics of coal pyrolysis, and improves the yield and quality of pyrolysis products, but makes full use of biomass resource, and alleviates the problem of environmental pollution, which results in the efficient, clean, and graded utilization of low-rank coal and biomass resource.
Currently, the researches of co-pyrolysis of low-rank coal and biomass mainly focus on the pyrolysis process optimization, the distribution rule of pyrolysis products, the synergy mechanism of co-pyrolysis and so on. Many works showed that the pyrolysis temperature, heating rate, biomass composition and other factors affected the distribution, yield and quality of products. In addition, compared to traditional pyrolysis, the new type pyrolysis, such as microwave pyrolysis and infrared pyrolysis, can markedly improve the pyrolysis efficiency, the yield and quality of pyrolysis products, which has gradually attracted the attention by scholars at home and abroad.
In this paper, the characteristics of pyrolysis product of four kinds of biomass (forest and agricultural products, algae, livestock products and municipal solid waste) assisted hydrogenated pyrolysis reactions of low-rank coalare roundly analyzed, and the hydrogenated co-pyrolysis mechanisms of biomass, such as catalysis of alkalis, radical reactions, and secondary reactions of volatiles, are summarized. In addition, the application of microwave pyrolysis and infrared pyrolysis in the field of co-pyrolysis are also introduced, and the development prospect of co-pyrolysis technology is forecasted.
Key words:  low-rank coal    biomass hydrogen-donor    hydropyrolysis    pyrolysis methods    efficiency and quality improvement
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TQ561.1  
基金资助: 国家自然科学基金(51774227);陕西省自然科学基础研究计划(2017ZDJC-33);陕西省自然科学基础研究计划企业联合基金项目(2019JLP-17);陕西省创新能力支撑计划(2020TD-028);钢铁工业环境保护国家重点实验室开放基金课题(YZC2019ky01)
通讯作者:  xazhoujun@126.com; wulei0718@126.com   
作者简介:  周晶晶,2018年6月毕业于西安建筑科技大学化学工程与工艺专业,获得工学学士学位。现为西安建筑科技大学化学与化工学院硕士研究生,师从周军教授,研究方向为低阶煤清洁高效转化利用。
周军,博士,三级教授,博士研究生导师,化学与化工学院副院长。1999年7月本科毕业于西北大学化工系,2002年硕士毕业于西安建筑科技大学冶金工程学院化工系,随后留校任教,并于2013年7月在西安建筑科技大学取得工学博士学位。主要从事煤化工新技术(煤清洁转化分级利用)、化工冶金新材料开发、贵金属冶金及资源综合利用等领域的研究与教学工作。主持或参与国家自然科学基金、国家科技支撑计划、国家“973”前期研究计划、陕西省“13115”重大科技创新、陕西省自然科学重大基础研究计划、陕西省科技创新团队等多项科研项目,发表研究论文50余篇,出版教材四部。曾获陕西省科学技术一等奖、中国有色金属学会科学科技一等奖、中国产学研合作促进会科学技术一等奖、陕西高等学校科学技术奖二等奖等多项奖励。
吴雷,工程师,西安建筑科技大学师资博士后,2020年12月毕业于西安建筑科技大学,获得工学博士学位。随后进入西安建筑科技大学冶金工程博士后流动站从事低品位能源高效清洁转化利用研究,合作导师为周军教授。
引用本文:    
周晶晶, 周军, 吴雷, 杨茸茸, 宋永辉, 张秋利. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 20070237-8.
ZHOU Jingjing, ZHOU Jun, WU Lei, YANG Rongrong, SONG Yonghui, ZHANG Qiuli. Research Progress of Hydrogenated Pyrolysis of Low-rank Coal Assisted by Biomass Hydrogen-donor. Materials Reports, 2022, 36(9): 20070237-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070237  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20070237
1 Ding X X, Li H J, Wang Y T. Clean Coal Technology, 2019, 25(5), 1(in Chinese).
丁肖肖, 李洪娟, 王亚涛.洁净煤技术, 2019, 25(5), 1.
2 Xia W C, Xie G Y, Peng Y L. Powder Technology, 2015, 277, 206.
3 Wu Z Q, Li Y W, Xu D H, et al. Fuel, 2019, 236, 43.
4 Zhu Y N, Wen W, Li Y M, et al. Journal of the Energy Institute, 2020, 93(1), 405.
5 Liu S Q, Tuo K Y, Wang L P, et al. Journal of the Energy Institute, 2020, 93(4), 1602.
6 Wang J F, Ma M, Bai Y H, et al. Fuel, 2020, 265, 116911.
7 Hassan H, Lim J K, Hameed B H. Bioresource Technology, 2016, 221, 645.
8 Liu W J, Li W W, Jiang H, et al. Chemical Reviews, 2017, 117, 6367.
9 Bhoi P R, Ouedraogo A S, Soloiu V, et al. Renewable and Sustainable Energy Reviews, 2020, 121, 109676.
10 Chen X Y, Liu L, Zhang L Y, et al. Energy & Fuels, 2019, 33, 1267.
11 Cao L C, Zhang C, Chen H H, et al. Bioresource Technology, 2017, 245, 1184.
12 Xie G H, Fang Y R, Li S B, et al. Journal of China Agricultural University, 2019, 24(8), 1(in Chinese).
谢光辉, 方艳茹, 李嵩博, 等.中国农业大学学报, 2019,24(8), 1.
13 Dai G X. Fundamental research on biomass fast pyrolysis and selective conversion. Ph.D. Thesis, Zhejiang University,China, 2020(in Chinese).
戴贡鑫. 生物质热解机理及选择性调控研究. 博士学位论文, 浙江大学, 2020.
14 Li G X. A Study on the pyrolysis mechanism of lignocellulosic biomass. Ph.D. Thesis, Zhejiang University, China, 2020(in Chinese).
李国翔. 木质纤维素类生物质热裂解机理研究. 博士学位论文, 浙江大学, 2020.
15 Li Y L, Huang S, Wang Q, et al. Fuel Processing Technology, 2019, 192, 13.
16 Niu Q. Experimental and mechanism study on pyrolysis of typical algae biomass. Master's Thesis, Tijin University, China, 2018(in Chinese).
牛琦. 典型藻类生物质热解实验与机理研究. 硕士学位论文, 天津大学, 2018.
17 Wu Z Q, Yang W C, Li Y W, et al. Bioresource Technology, 2018, 255, 238.
18 Wu Z Q, Yang W C, Li Y W, et al. Bioresource Technology, 2018, 268, 672.
19 Cheng X H. Low temperature co-pyrolysis of brown coal and ulva. Master's Thesis, Wuhan University of Science and Technology, China, 2015(in Chinese).
程晓晗. 石莼与褐煤低温共热解的转化研究. 硕士学位论文,武汉科技大学, 2015.
20 Wu J G, Meng A H, Zhang Z D, et al. Journal of Jilin Agricultural University, 2011, 33(3), 237(in Chinese).
吴景贵, 孟安华, 张振都, 等.吉林农业大学学报, 2011, 33(3), 237.
21 Liu W R, Zeng D, She L, et al. Science of the Total Environment, 2020, 734, 139023.
22 Zhou S M, Han L J, Huang G Q, et al. Journal of Analytical and Applied Pyrolysis, 2018, 134, 343.
23 Xu Y G, Qi F J, Bai T X, et al. Journal of Hazardous Materials, 2019, 380,120870.
24 Ma M, Bai Y H, Song X D, et al. Science of the Total Environment, 2020, 728, 138828.
25 Atienza-Martínez M, Ábrego J, Gea G, et al. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104724.
26 Song Q, Zhao H Y, Jia J W, et al. Journal of Cleaner Production, 2020, 258, 120682.
27 Tokmurzin D, Kuspangaliyeva B, Aimbetov B, et al. Energy, 2020, 191, 116562.
28 Seo M W, Kim D S, Lee S H, et al. Journal of Analytical and Applied Pyrolysis, 2010, 88, 160.
29 Liu B, Li S Q, Liao H Q, et al. Fuel & Chemical Processes, 2011, 42(6),1(in Chinese).
刘波, 李世青, 廖洪强, 等.燃料与化工, 2011, 42(6), 1.
30 Meng H Y, Wang S Z, Chen L, et al. Bioresource Technology, 2016, 209, 273.
31 Ulloa C A, Gordon A L, García X A. Fuel Processing Technology, 2009, 90 (4), 583.
32 Park D K, Kim S D, Lee S H, et al. Bioresource Technology, 2010, 101(15), 6151.
33 Abdelsayed V, Ellison C R, Trubetskaya A, et al. Energy Fuels, 2019, 33, 7069.
34 An Y, Tahmasebi A, Yu J L. Journal of Analytical and Applied Pyrolysis, 2017, 128, 75.
35 Zhu J L,Jin L J, Luo Y W, et al. Energy Conversion and Management, 2020, 205, 112442.
36 Sonobe T, Worasuwannarak N, Pipatmanomai S. Fuel Processing Technology, 2008, 89 (12), 1371.
37 Wang Z H, Wan K D, Xia J, et al. Energy & Fuels, 2015, 29(8), 5036.
38 Lin B W, Zhou J S, Qin Q W, et al. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104718.
39 Rajasekhar R B, Vinu R. Fuel Processing Technology, 2018, 178, 41.
40 Chen C X, Ma X Q, He Y. Bioresource Technology, 2012, 117, 264.
41 Wu Z Q, Yang W C, Yang B L. Bioresource Technology, 2018, 249, 501.
42 He X M, Pan Y, Chen K, et al. Coal Conversion, 2012, 35(4), 11(in Chinese).
何选明, 潘叶, 陈康, 等.煤炭转化, 2012, 35(4),11.
43 Jeong Y W, Choi S K, Choi Y S, et al. Renewable Energy, 2015, 79, 14.
44 Zhou Y C, Chen Z Z, Gong H J, et al. Waste Management, 2020, 107, 74.
45 Zhang M M, Song Q, Song L H, et al. Environmental Engineering, 2018, 36(4),137(in Chinese).
张蒙蒙, 宋强, 宋丽华, 等.环境工程, 2018, 36(4),137.
46 Liu C. TG-FTIR analysis of co-pyrolysis characteristics of refuse derived fuel and lignite. Master's Thesis, Changsha University of Science & Technology, China, 2017(in Chinese).
刘成. TG-FTIR研究垃圾衍生燃料与褐煤共热解特性. 硕士学位论文,长沙理工大学, 2017.
47 Ran H, Ma Y T. Low Carbon World, 2019(7), 91(in Chinese).
冉昊, 马禹婷.低碳技术, 2019(7), 91.
48 Zhang H Y, Ma Y N, Shao S S, et al. Applied Energy, 2017, 208, 867.
49 Qian Y P, Li W F, Chen X L, et al. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(1),35(in Chinese).
钱亚平, 李伟锋, 陈雪莉, 等. 华东理工大学学报(自然科学版), 2013, 39(1),35.
50 Tang C Y. Mechanism research on the influence on yield and quality of tar derived from co-pyrolysis of biomass and coal. Ph.D. Thesis, East China University of Science and Technology, China, 2017(in Chinese).
唐初阳. 影响生物质和煤共热解油产率和品质的机理研究. 博士学位论文, 华东理工大学, 2017.
51 Li C Z. Fuel, 2013, 112, 609.
52 Kirtania K, Bhattacharya S. Biomass and Bioenergy, 2013, 55, 291.
53 Idris S S, Abd Rahman N, Ismail K, et al. Bioresource Technology, 2010, 101(12), 4584.
54 Pei X F. Clean Coal Technology, 2016, 22(3), 40(in Chinese).
裴贤丰.洁净煤技术, 2016, 22(3), 40.
55 Zhou J, Wu L, Liang K, et al. Materials Reports A: Review Papers, 2019, 33(1), 191(in Chinese).
周军, 吴雷, 梁坤, 等. 材料导报:综述篇, 2019, 33(1), 191.
56 Huang Y F, Chiueh P T, Lo S L. Sustainable Environment Research, 2016, 26,103.
57 Mamaeva A, Tahmasebi A, Tian L, et al. Bioresource Technology, 2016, 211, 382.
58 Zhang Y N, Fan L L, Liu S Y, et al. Bioresource Technology, 2018, 259, 461.
59 Sui C P, Wang L, Huang H F. Journal of University of Chinese Academy of Sciences, 2016, 33(3), 398(in Chinese).
隋春平, 王雷, 黄洪风.中国科学院大学学报, 2016, 33(3), 398.
60 Wang N, Hou X J. Food Research and Development, 2019, 40(4), 209(in Chinese).
王楠, 侯旭杰. 食品研究与开发, 2019, 40(4), 209.
61 Zhu J L, Jin L J, Li J G, et al. Bioresource Technology, 2019, 290, 121739.
62 Li J Q, Zhu J L, Hu H Q, et al. Fuel, 2020, 272, 117739.
[1] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed