Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24040022-10    https://doi.org/10.11896/cldb.24040022
  无机非金属及其复合材料 |
胶粉改性沥青预处理技术研究进展
高英力1,2,*, 李昀博1,2, 田维伟1,2, 朱俊材1,2, 廖美捷1,2, 王蒴1,2
1 长沙理工大学交通运输工程学院,长沙 410114
2 湖南省碳中和道路新材料工程技术研究中心,长沙 410114
Progress on Pre-treatment Technology of Rubber Powder Modified Asphalt
GAO Yingli1,2,*, LI Yunbo1,2, TIAN Weiwei1,2, ZHU Juncai1,2, LIAO Meijie1,2, WANG Shuo1,2
1 School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China
2 Hunan Provincial Engineering Technology Research Center for Novel and Carbon Neutral Road Material, Changsha University of Science & Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 20423KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 预处理技术作为提升橡胶沥青储存稳定性的重要手段受到国内外学者的广泛关注。为了及时对胶粉预处理新技术进行归纳总结,系统梳理不同预处理方法对胶粉改性沥青综合性能的影响规律及作用机理。本文从预处理方法的技术特点、综合性能表现以及微观影响机制等角度,对国内外现有相关研究的核心内容进行了概括,并探讨了预处理技术对胶粉改性沥青性能提升的内在原理、关键技术的发展趋势。在整体改性技术中,物理辐射法、机械化学挤压法和微生物代谢法分别在胶粉改性过程中发挥着高效环保改性、规模化稳定生产和无害化环保处理的独特优势;在表面改性技术中,溶液浸泡法、偶联活化法、等离子活化法和表面接枝活化法分别在胶粉改性过程中展现出基础表面改性、高效界面整合、深层次表面重构和先进功能化构建的优化效能。未来将推动胶粉预处理技术向高效、环保和智能化发展,通过创新耦合方法、绿色技术和智能调控实现技术突破。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高英力
李昀博
田维伟
朱俊材
廖美捷
王蒴
关键词:  胶粉改性沥青  预处理  储存稳定性  整体改性  表面改性    
Abstract: As an important means to improve the storage stability of rubber asphalt, pre-treatment technology has acquired widespread concern by domestic and international scholars. In order to timely summarize the new technology of rubber powder pre-treatment and systematically sort out the influence law and mechanism of different pre-treatment methods on the comprehensive performance of rubber powder modified asphalt. This article summarizes the core contents of existing related research and discusses the principle of pre-treatment technology to improve the performance of rubber powder modified asphalt, the development trend of key technologies from the perspectives of technical characteristics, comprehensive performance and micro-mechanism of pre-treatment methods. In the bulk modification methods, technology physical radiation method, mechanochemical extrusion method and microbial metabolism method in the process of rubber powder modification play the unique advantages of high efficiency and environmental protection modification, large-scale stable production and harmless environmental protection treatment. In the surface modification methods, solution soaking method, coupling activation method, plasma activation method and surface grafting activation method in the process of rubber powder modification show the optimization efficiency of basic surface modification, efficient interface integration, deep surface reconstruction and advanced functional construction. In the future, it will promote the development of rubber powder pretreatment technology to be efficient, environmentally friendly and intelligent, and achieve technological breakthroughs through innovative coupling methods, green technology and intelligent control.
Key words:  rubber powder modified asphalt    pre-treatment    storage stability    bulk modification    surface modification
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TQ33  
  U414  
基金资助: 国家自然科学基金(52278239;52308234;52209154);湖南省科技厅重点研发项目(2022JJ30042;2023JJ30040);湖南省自然资源厅科研基金(2022G07);科技实践创新创业能力提升计划项目(CLSJCX23002)
通讯作者:  *高英力,教授,博士研究生导师。目前主要从事工业固体废弃物综合利用、道路结构新材料的研发及应用等方面的研究工作。yingligao509@126.com   
引用本文:    
高英力, 李昀博, 田维伟, 朱俊材, 廖美捷, 王蒴. 胶粉改性沥青预处理技术研究进展[J]. 材料导报, 2025, 39(9): 24040022-10.
GAO Yingli, LI Yunbo, TIAN Weiwei, ZHU Juncai, LIAO Meijie, WANG Shuo. Progress on Pre-treatment Technology of Rubber Powder Modified Asphalt. Materials Reports, 2025, 39(9): 24040022-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040022  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24040022
1 Liu H, Cui Y, Wang Q D. China Resources Comprehensive Utilization, 2023, 41(10), 64 (in Chinese).
刘鹤, 崔燕, 王乾达. 中国资源综合利用, 2023, 41(10), 64.
2 Cui L P. China Tire Resources Recycling, 2022(5), 27 (in Chinese).
崔吕萍. 中国轮胎资源综合利用, 2022(5), 27.
3 Meng X H, Liu Q, Pan J J, et al. China Environmental Science, 2023, 43(S1), 376 (in Chinese).
孟献昊, 刘强, 潘京津, 等. 中国环境科学, 2023, 43(S1), 376.
4 Han D Y, Wang L, Guo P Z, et al. Journal of Changsha University of Science & Technology (Natural Science), 2024, 21(3) , 61(in Chinese).
韩大勇, 王亮, 郭朋召, 等. 长沙理工大学学报(自然科学版), 2024, 21(3) , 61.
5 Shi S. Construction & Design for Engineering, 2021(4), 87 (in Chinese).
石帅. 工程建设与设计, 2021(4), 87.
6 Xiao F P, Wang T, Wang J Y, et al. China Journal of Highway and Transport, 2019, 32(4), 73 (in Chinese).
肖飞鹏, 王涛, 王嘉宇, 等. 中国公路学报, 2019, 32(4), 73.
7 Guo Z Y, Shen G H, Wang X Y, et al. China Journal of Highway and Transport, 2012, 25(4), 22 (in Chinese).
郭朝阳, 沈国辉, 王喜燕, 等. 中国公路学报, 2012, 25(4), 22.
8 Kocak S, Kutay M E. Construction and Building Materials, 2020, 248, 118658.
9 Venudharan V, Biligiri K P, Das N C. Construction and Building Materials, 2018, 181, 455.
10 Li J, Yao S, Xiao F, et al. International Journal of Pavement Engineering, 2022, 23(3), 651.
11 Wang X, Fan Z, Li L, et al. Applied Sciences, 2019, 9(16), 3434.
12 Li T G, Qiao W Y, Wang Y, et al. Journal of Municipal Technology, 2023, 41(11), 207 (in Chinese).
李廷刚, 乔文耀, 王宇, 等. 市政技术, 2023, 41(11), 207.
13 Zhang X, Wang X, Wan C, et al. Construction and Building Materials, 2023, 362, 129777.
14 Rath P, Majidifard H, Jahangiri B, et al. Transportation Research Record, 2021, 2675(10), 381.
15 Liu Q, Liu J, Yu B, et al. Construction and Building Materials, 2022, 314, 125676.
16 Dong C C. Comprehensive utilization of waste rubber resources, Chemical Industry Press, China, 2003, pp. 273 (in Chinese).
董诚春. 废橡胶资源综合利用, 化学工业出版社, 2003, pp. 273.
17 Colom X, Faliq A, Formela K, et al. Polymer Testing, 2016, 52, 200.
18 De-Sousa F D B, Scuracchio C H, Hu G H. Polymer Degradation and Stability, 2017, 138, 169.
19 Xu O, Li M, Hou D, et al. Construction and Building Materials, 2020, 256, 119440.
20 Zhao X W, Chen L, Xu T, et al. Highways and Transportation in Inner Mongolia, 2023(6), 30 (in Chinese).
赵旭武, 陈亮, 徐添, 等. 内蒙古公路与运输, 2023(6), 30.
21 Xu P, Gao J, Pei J, et al. Construction and Building Materials, 2021, 282, 122641.
22 Yin J, Wang S, Lv F. Construction and Building Materials, 2013, 49, 712.
23 Yang X, Shen A, Li B, et al. Journal of cleaner production, China, 2020, 248, 119230.
24 Duan H, Zhu C, Zhang H, et al. International Journal of Pavement Engineering, 2023, 24(1), 2164891.
25 Zhou T, Zhou J, Li Q, et al. Frontiers in Materials, 2020, 7, 603938.
26 Wu W, Jiang W, Xiao J, et al. Journal of Cleaner Production, 2022, 377, 134488.
27 Yao Z, Yang R, Shi J, et al. Construction and Building Materials, 2022, 342, 127862.
28 Sun L, Wen Y, Liu Q, et al. Construction and Building Materials, 2021, 313, 125409.
29 Li M, Xu O, Min Z, et al. Materials and Structures, 2023, 56(7), 117.
30 Liang M, Qiu Z, Luan X, et al. Frontiers in Materials, 2022, 9, 845718.
31 Liu W, Xu Y, Wang H, et al. Materials, 2021, 14(10), 2693.
32 Lushinga N, Dong Z, Cao L. Nanomaterials, 2022, 12(24), 4388.
33 Isayev A, Chen J, Tukachinsky A. Novel Ultrasonic Technology for Devulcanization of Waste Rubbers. Fall ACS Rubber Division Meeting Pittsburgh, PA, 1994, pp.86.
34 Feng W, Isayev A I. Polymer Engineering and Science, 2006, 46(1), 8.
35 Wang Q. Study on cavitation theory and multi-scale characteristics of ultrasonic assisted preparation of waste crumb rubber modified asphalt. Master’s Thesis, North University of China, China, 2023 (in Chinese).
王倩. 超声波辅助制备废胶粉改性沥青的空化理论及多尺度特性研究. 硕士学位论文, 中北大学, 2023.
36 Xu M, Liu J, LiW, et al. Journal of materials in civil engineering, 2015, 27(5), 04014173.
37 Zhang X P, Wei B F, Zhang H T, et al. China Rubber/Plastics Technology and Equipment, 2023, 49(6), 18 (in Chinese).
张小萍, 韦帮风, 张航天, 等. 橡塑技术与装备, 2023, 49(6), 18.
38 Zhao A D. Research of using a co-rotating twin-screw extruder to make devulcanized rubber and the properties of modified asphalt. Master’s Thesis, Beijing University of Chemical Technology, China, 2015 (in Chinese).
赵安东. 双螺杆挤出机制备脱硫橡胶及脱硫橡胶改性沥青的性能和机理研究. 硕士学位论文, 北京化工大学, 2015.
39 Wang J, Zhang Z, Li Z. Journal of Materials in Civil Engineering, 2020, 32(1), 04019330.
40 Dong R, Li J, Wang S. Journal of Materials in Civil Engineering, 2011, 23(8), 1138.
41 Cheng G, Shen B, Zhang J. Petroleum Science and Technology, 2011, 29(2), 192.
42 Li J, Xiao X, Chen Z, et al. Sustainable Materials and Technologies, 2022, 32, e00417.
43 Wang K, Kang Y. China Rubber/Plastics Technology and Equipment, 2017, 43 (3), 58 (in Chinese).
王坤, 康永. 橡塑技术与装备, 2017, 43 (3), 58.
44 Kabir S F, Zheng R, Delgado A G, et al. Resources, Conservation and Recycling, 2021, 164, 105144.
45 Ji K J, Yuan Z X, Chen Z X. Vulcanized rubber powder: principle, Technology and Application. Chemical Industry Press, China, 2016, pp. 64 (in Chinese).
纪奎江, 袁仲雪, 陈占勋. 硫化橡胶粉——原理·技术·应用, 化学工业出版社, 2016, pp. 64.
46 Badughaish A, Li J, Amirkhanian S, et al. Journal of Cleaner Production, 2022, 354, 131762.
47 Shatanawi K, Biro S, Thodesen C, et al. International Journal of Pavement Engineering, 2009, 10(4), 289.
48 Shatanawi K M, Biro S, Naser M, et al. Road Materials and Pavement Design, 2013, 14(3), 723.
49 Li J, Chen Z X, Xiao F P, et al. Journal of Materials in Civil Engineering, 2022, 34(1), 04021377.
50 Guo X X, Dou W J, Gu Y. China Rubber Industry, 2023, 70(8), 570 (in Chinese).
郭新霞, 窦文静, 顾尧. 橡胶工业, 2023, 70(8), 570.
51 Yu Z G, Liu L X. Tianjin Chemical Industry, 1997(3), 46 (in Chinese).
于忠贵, 刘连香. 天津化工, 1997(3), 46.
52 Song L, Jiang Y X. Chinese Journal of Chemical Education, 2020, 41(19), 103 (in Chinese).
宋琳, 姜言霞. 化学教育, 2020, 41(19), 103.
53 Shen Z C, Huang Y Y. Hunan Communication Science and Technology, 2017, 43(2), 4 (in Chinese).
申泽春, 黄云艳. 湖南交通科技, 2017, 43(2), 4.
54 Zhang Y, Liu Z, Peng J. Applied Sciences, 2019, 9(22), 4831.
55 Xiang Y, Fan H, Liu Z. Construction and Building Materials, 2020, 236, 117600.
56 Zheng S L, Wang C L, Li C Q. Powder surface modification, China Building Materials Industry Press, China, 2019 (in Chinese).
郑水林, 王彩丽, 李春全. 粉体表面改性, 中国建材工业出版社, 2019.
57 Liu L, Liu Z H, Xiang Y, et al. Journal of Building Materials, 2017, 20(1), 150 (in Chinese).
柳力, 刘朝晖, 向宇, 等. 建筑材料学报, 2017, 20(1), 150.
58 Cao W D, Liu S T, Fang J G, et al. Journal of Building Materials, 2009, 12(4), 497 (in Chinese).
曹卫东, 刘树堂, 房建果, 等. 建筑材料学报, 2009, 12(4), 497.
59 Yan T Y. Study on the performance of coupling modified crumb rubber/steel slag powder composite modified asphalt mastic and asphalt mixture. Master’s Thesis, Guangxi University, China, 2022 (in Chinese).
颜添毅. 偶联改性橡胶粉/钢渣粉复合改性沥青胶浆及其混合料性能研究. 硕士学位论文, 广西大学, 2022.
60 Krasnoslobodtsev A V, Smirnov S N. Langmuir, 2002, 18(8), 3181.
61 Kallury K M, Macdonald P M, Thompson M. Langmuir, 1994, 10(2), 492.
62 Xiao F P, Zong Q D, Chen J, et al. China Journal of Highway and Transport, 2019, 32(4), 170 (in Chinese).
肖飞鹏, 宗启迪, 陈军, 等. 中国公路学报, 2019, 32(4), 170.
63 Fanelli F, Fracassi F. Surface and Coatings Technology, 2017, 322, 174.
64 Schutze A, Jeong J Y. IEEE transactions on plasma science, 1998, 26(6), 1685.
65 You F B. Performance study on waste tire crumb rubber modified asphalt activated by low temperature plasma. Master’s Thesis, Suzhou University of Science and Technology, China, 2015 (in Chinese).
尤凤兵. 低温等离子体活化废旧轮胎橡胶粉改进沥青性能研究. 硕士学位论文, 苏州科技学院, 2015.
66 Mao Y M. Performance of EVA/CRM modified asphalt prepared at low temperature plasma. Master’s Thesis, Suzhou University of Science and Technology, China, 2021 (in Chinese).
茆一鸣. 低温等离子体活化EVA/废胶粉复配改性沥青制备及其性能研究. 硕士学位论文, 苏州科技大学, 2021.
67 Wang X, Hong L, Wu H, et al. Construction and Building Materials, 2021, 271, 121881.
68 Liu B, Li J, Han M, et al. Construction and Building Materials, 2020, 238, 117737.
69 Xie J, Yang Y, Lv S, et al. Materials, 2019, 12(12), 2014.
70 Xie J, Yang Y, Lv S, et al. Polymers, 2019, 11(10), 1563.
71 Yang Y M. Investigation on the preparation and performance of modified asphalt based on the grafting activation of crumb rubber. Master’s Thesis, Changsha University of Science & technology, China, 2020 (in Chinese).
阳月明. 接枝活化废胶粉改性沥青的制备及性能研究. 硕士学位论文, 长沙理工大学, 2020.
72 Kocevski S, Yagneswaran S, Xiao F, et al. Construction and Building Materials, 2012, 34, 83.
73 Kumar A, Choudhary R. Construction and Building Materials, 2024, 419, 135558.
74 Yu G, Li Z M, Zhou X, et al. Petroleum Science and Technology, 2011, 29(4), 411.
75 Kuang D L, Kang B D, Liu W C, et al. Highway, 2021, 66(11), 305 (in Chinese).
况栋梁, 康秉铎, 刘文昌, 等. 公路, 2021, 66(11), 305.
76 Liu L, Liu Z, Yang C. Advances in Materials Science and Engineering, 2021, 2021, 1.
77 Hosseinnezhad S, Kabir S F, Oldham D J, et al. Journal of Cleaner Production, 2019, 225, 82.
78 Kabir S F, Mousavi M A, Fini E H. Journal of Cleaner Production, 2020, 252, 119856.
79 Mousavi M, Hosseinnezhad S, Kabir S F, et al. Resources, Conservation and Recycling, 2019, 149, 292.
[1] 张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞. 生物质基硬碳钠离子电池负极材料预处理研究进展[J]. 材料导报, 2025, 39(9): 24030195-12.
[2] 林家茂, 姚美意, 陈哲斌, 徐诗彤, 胡丽娟. 生物医用锆基合金的研究进展[J]. 材料导报, 2025, 39(5): 24020141-10.
[3] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[4] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[5] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[6] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[7] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[8] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[9] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[10] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[11] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[12] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[13] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[14] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[15] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed