Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24040021-8    https://doi.org/10.11896/cldb.24040021
  无机非金属及其复合材料 |
过渡金属硫化物SERS及食品安全检测研究进展
高潮1, 谢怀进1, 高晓青2, 韩迎东2,*
1 常州工程职业技术学院检验检测认证学院,江苏 常州 213164
2 中国民航大学理学院,天津 300300
Research Progress on Transition Metal Dichalcogenides Based SERS and Food Safety Detection Application
GAO Chao1, XIE Huaijin1, GAO Xiaoqing2, HAN Yingdong2,*
1 School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou 213164, Jiangsu, China
2 College of Science, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 15386KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 表面增强拉曼光谱(SERS)技术由于具备指纹识别、检测极限低、灵敏度高、操作简便、兼具在线与离线检测能力等优势从被发现起就引起了广泛的研究兴趣。SERS技术主要通过制备、加工特殊的基底使得目标检测物的拉曼信号得到指数级增强,有效解决了拉曼散射光远小于弹性散射光的问题,甚至可实现单分子级别的检测。近期,过渡金属硫化物作为一种新兴SERS基底表现出分子兼容性高、抗荧光背景等多种优势,其对拉曼信号的增强机制也与传统贵金属基底不同,因此研究人员从增强机理、结构调控、SERS性能、应用等角度进行了大量的研究。本文总结了过渡金属硫化物SERS的研究进展,简单介绍了SERS基底的发展历程和分类,主要介绍了过渡金属硫化物SERS的增强机理、过渡金属硫化物的结构调控方法与对SERS性能影响、过渡金属硫化物SERS在食品安全检测方面的应用进展,最后对存在的主要问题及应用发展前景进行了总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高潮
谢怀进
高晓青
韩迎东
关键词:  表面增强拉曼  过渡金属硫化物  结构  增强  检测    
Abstract: Surface enhanced Raman spectroscopy (SERS) technology has attracted widespread research interest since its discovery due to its advantages such as fingerprint recognition, low detection limit, high sensitivity, easy operation, and the ability to detect onlineor offline. It mainly enhances the Raman signal of the target detection object exponentially by preparing and processing special substrates, effectively solving the problem of weak Raman scattering intensity, and even at the single-molecule detection level. Recently, transition metal dichalcogenides (TMDs) based SERS substrates have shown impressive advantages such as high molecular compatibility and anti-fluorescence. Their enhancement mechanism for Raman signals is also different from traditional precious metal substrates. Therefore, researchers have conducted extensive research from the perspectives of enhancement mechanism, structural regulation, SERS performance, and applications. This article summarizes the research progress of TMDs based SERS, by introducing the development process and classification of SERS substrates, the structural control methods and performance, the application progress of transition metal sulfide SERS in food safety. Finally proposes the main problems and application development prospects.
Key words:  SERS    transition metal dichalcogenides    structure    enhancement    detection
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  O561.3  
基金资助: 国家自然科学基金(62205035;62105235);2023年江苏高校“青蓝工程”资助项目;江苏省高等学校基础科学(自然科学)研究项目(22KJD350001)
通讯作者:  *韩迎东,中国民航大学助理教授,研究生导师,主要从事纳米光电材料与器件研究。hansuo@126.com   
作者简介:  高潮,常州工程职业技术学院副教授,主要从事纳米光电材料与器件研究。
引用本文:    
高潮, 谢怀进, 高晓青, 韩迎东. 过渡金属硫化物SERS及食品安全检测研究进展[J]. 材料导报, 2025, 39(9): 24040021-8.
GAO Chao, XIE Huaijin, GAO Xiaoqing, HAN Yingdong. Research Progress on Transition Metal Dichalcogenides Based SERS and Food Safety Detection Application. Materials Reports, 2025, 39(9): 24040021-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040021  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24040021
1 Raman C V, Krishna K S. Nature, 1928, 121, 501.
2 Pan J, Lv M, Bai H, et al. Energy & Fuels, 2017, 31, 1136.
3 Fleischmann M, Hendra P J, McQuillan A J. Chemical Physics Letters, 1974, 26, 163.
4 Jeanmaire D L, Van Duyne R P. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84, 1.
5 Awiaz G, Lin J, Wu A. Exploration, 2023, 3, 20220072.
6 Pham X H, Hahm E, Kim T H, et al. Nano Research, 2020, 13, 3338.
7 Wang J, Wu X, Wang C, et al. ACS Applied Materials & Interfaces, 2016, 8, 19958.
8 Fan M, Lai F J, Chou H L, et al. Chemical Science, 2013, 4, 509.
9 Liu K, Bai Y, Zhang L, et al. Nano Letters, 2016, 16, 3675.
10 Zhao X, Deng M, Rao G, et al. Small, 2018, 14, 1802477.
11 Lv Y, Sun H, Lian X, et al. Applied Surface Science, 2022, 64, 154594.
12 Li L, Jiang R, Shan B, et al. Nature Communications, 2022, 13, 5249.
13 Zhao Y X, Zheng Z X, Zhang L S, et al. Physical Chemistry Chemical Physics, 2023, 25, 15209.
14 Zhou Y, Gu Q, Qiu T, et al. Angewandte Chemie, 2021, 133, 26464.
15 Qin L, Tang M, Shen H, et al. Chemical Engineering Journal, 2023, 466, 143262.
16 Nie S, Emory S R. Science, 1997, 275, 1102.
17 Wang X, Guo L. Angewandte Chemie International Edition, 2020, 59, 4231.
18 Song G, Gong W, Cong S, et al. Angewandte Chemie International Edition, 2021, 60, 5505.
19 Liu X, Dang A, Li T, et al. ACS Sensors, 2023, 8, 1287.
20 Sarycheva A, Makaryan T, Maleski K, et al. Journal of Physical Chemistry C, 2017, 121, 19983.
21 Tyagi N, Sharma Gaurav, Kumar D, et al. Coordination Chemistry Reviews, 2023, 496, 215394.
22 Wang Q, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7, 699.
23 Gao C, Han Y, Zhang K, et al. Advanced Science, 2020, 7, 2002444.
24 Wen S, Jiang W, Yang Y, et al. Journal of Physical Chemistry C, DOI: 10. 1021/acs. jpcc. 4c00844.
25 Li A, Lin J, Huang Z, et al. IScience, 2018, 10, 1.
26 Chen M, Liu Dong, Du X, et al. TrAC Trends in Analytical Chemistry, 2020, 130, 115983.
27 Chrysos M, Verzhbitskiy I A. Physical Review A, 2010, 81, 042705.
28 Lombardi J R, Birke R L. Journal of Physical Chemistry C, 2014, 118, 11120.
29 Weng C, Luo Y, Wang B, et al. Journal of Materials Chemistry C, 2020, 8, 14138.
30 Lee Y, Kim H, Lee J, et al. Chemistry of Materials, 2016, 28, 180.
31 Li M, Gao Y, Fan X, et al. Nanoscale Horizons, 2021, 6, 186.
32 Lei Z, Wu D, Cao X, et al. Journal of Alloys and Compounds, 2023, 937, 168294.
33 Liu D, Chen X, Y Hu, et al. Nature Communications, 2018, 9, 193.
34 Singh J, Kumar S, Soni R K, et al. Journal of Alloys and Compounds, 2020, 849, 156502.
35 Wu D, Chen J, Ruan Y, et al. Journal of Materials Chemistry C, 2018, 6, 12547.
36 Sun L, Hu H, Zhan D, et al. Small, 2014, 10, 1090.
37 Yan D, Qiu W, Chen X, et al. Journal of Physical Chemistry C, 2018, 122, 14467.
38 Zuo P, Jiang L, Li X, et al. Nanoscale, 2019, 11, 485.
39 Zheng Z, Cong S, Gong W, et al. Nature Communications, 2017, 8, 1993.
40 Liu Y, Gao Z, Chen M, et al. Advanced Functional Materials, 2018, 28, 1805710.
41 Yin Y, Miao P, Zhang Y, et al. Advanced Functional Materials, 2017, 27, 1606694.
42 Song X, Wang Y, Zhao F, et al. ACS Nano, 2019, 13, 8312.
43 Tao L, Chen K, Chen Z, et al. Journal of the American Chemical Society, 2018, 140, 8696.
44 Lee H K, Lee Y H, Koh C S L, et al. Chemical Society Reviews, 2019, 48, 731.
45 Guselnikova O, Lim H, Kim H J, et al. Small, 2022, 18, 2107182.
46 Losurdo M, Bergmair I, Dastmalchi B, et al. Advanced Functional Materials, 2014, 24, 1864.
47 Man B, Wang G, Li Z, et al. Journal of Alloys and Compounds, 2022, 902, 163789.
48 Li M, Wei Y, Fan X. et al. Nano Research, 2022, 15, 637.
49 Liu Y, Kim M, Seunghee H, et al. Nanotoday, 2021, 37, 101063.
50 Dandu M, Watanabe K, Taniguchi T, et al. ACS Photonics, 2020, 7, 519.
51 Wang F, Wang J, Guo S, et al. Scientific Reports, 2017, 7, 44712.
52 Bernat A, Samiwala M, Albo J, et al. Journal of Agricultural and Food Chemistry, 2019, 67, 12341.
53 Nilghaz A, Mahdi Mousavi S, Amiri A, et al. Journal of Agricultural and Food Chemistry, 2022, 70, 5463.
54 Xu M L, Gao Y, Han X X, et al. Journal of Agricultural and Food Chemistry, 2017, 65, 6719.
55 Fu X, Wu H, Liu Z, et al. ACS Applied Nano Materials, 2024, 7, 3988.
56 Quan Y, Tang X H, Shen W, et al. Advanced Optical Materials, 2022, 10, 2201395.
57 Su R, Yang S, Han D, et al. Journal of Colloid and Interface Science, 2023, 635, 1.
58 Jiang L, Xiong S, Yang S, et al. Ceramics International, 2023, 49, 19328.
59 Li C, Yu J, Xu S, et al. Advanced Materials Technologies, 2018, 3, 1800174.
60 Zhai Y, Yang H, Zhang S, et al. Journal of Materials Chemistry C, 2021, 9, 6823.
61 He M, Li Z, Guo Y, et al. Advanced Sustainable Systems, 2023, 7, 2200387.
[1] 朱作祥, 骆祚森, 李建林, 邓华锋, 王乐华. 含水状态对硅质胶结砂岩抗拉特性的影响及颗粒流模拟[J]. 材料导报, 2025, 39(9): 24010198-9.
[2] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[3] 赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
[4] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[5] 来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
[6] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[7] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[8] 陈新, 罗洪杰, 王理, 吴林丽, 栢天舒, 廉德良. 基于二维图像和三维模型的泡沫铝结构表征的差异[J]. 材料导报, 2025, 39(8): 24030173-8.
[9] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[10] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[11] 刘扬, 范怡静, 沈伟建, 王睿鑫, 陈进, 唐宇. 药型罩材料技术研究进展[J]. 材料导报, 2025, 39(7): 24040081-9.
[12] 黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
[13] 吴焱, 乔英杰, 白成英, 王晓东, 张晓红. 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 23120194-11.
[14] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[15] 汤云, 习敏娟, 王许辉, 邓乐淳, 陈强. 吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能[J]. 材料导报, 2025, 39(6): 24020060-7.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed