Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24030169-9    https://doi.org/10.11896/cldb.24030169
  金属与金属基复合材料 |
无损检测技术在高含硫天然气管道中的应用研究进展
赵帅1,2,*, 文绍牧3, 廖柯熹4, 秦林1,2, 林冬1,2, 高健1,2
1 中国石油西南油气田公司安全环保与技术监督研究院,成都 610041
2 国家能源高含硫气藏开采研发中心,成都 610000
3 中国石油西南油气田公司,成都610056
4 西南石油大学石油与天然气工程学院,成都 610500
Research Development on the Implementation of Non-destructive Testing Technologies in High Sulfur Natural Gas Pipelines
ZHAO Shuai1,2,*, WEN Shaomu3, LIAO Kexi4, QIN Lin1,2, LIN Dong1,2, GAO Jian1,2
1 Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu 610041, China
2 China National Energy R & D Center of High Sulfur Gas Exploitation, Chengdu 610000, China
3 PetroChina Southwest Oil and Gas Field Company, Chengdu 610056, China
4 School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 26031KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 四川盆地2/3的气田含有硫化氢等酸性气体,造成管道内部出现了氢鼓泡、氢致开裂、应力腐蚀开裂、硫化物应力开裂等腐蚀形貌,导致管道快速穿孔,增加管道事故的风险。为了及时掌握管道内壁的运行状况,保障管道本质安全,应定期对高含硫天然气管道开展检测。本文介绍了漏磁、超声波、电磁超声、涡流、射线五种检测技术的优缺点和适用范围,并展示了其中三种方法的现场检测结果,对比分析了几种方法的灵敏度和准确性,为高含硫天然气管道的完整性评价提供强有力的数据支撑;最后基于高含硫天然气管道的特点,对管道材质的选择、无损检测技术的发展及应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵帅
文绍牧
廖柯熹
秦林
林冬
高健
关键词:  高含硫  腐蚀机理  无损检测  漏磁检测技术  涡流检测技术    
Abstract: Two-thirds of the gas fields in the Sichuan Basin contain acidic gases such as hydrogen sulfide, which causes corrosion morphology such as hydrogen bubbling, hydrogen induced cracking, stress corrosion cracking, and sulfide stress cracking inside pipelines, resulting in rapid pipeline perforation and an increased risk of pipeline accidents. Regular inspections of high sulfurnatural gas pipelines should be performed to ensure the inherent safety of the pipeline and to obtain a timely understanding of the operation status of the pipeline's inner wall. This summary discusses the benefits, drawbacks, and applications of five detection techniques: magnetic flux leakage, ultrasonic testing, electromagnetic acoustic transducers, eddy current testing, radiographic testing. Additionally, the on-site detection findings of three methods were presented, and the sensitivity and accuracy of several approaches were compared and assessed, providing solid data support for the integrity evaluation of high sulfur natural gas pipelines. Finally, based on the features of high sulfur natural gas pipelines, the selection of pipeline materials and the use of non-destructive testing techniques were addressed.
Key words:  high sulfur content    corrosion mechanism    nondestructive testing    magnetic flux leakage detection technology    eddy current testing technology
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TG115.28  
通讯作者:  *赵帅,中国石油西南油气田公司安全环保与技术监督研究院在站博士后。目前主要从事管道检测、完整性等方面的研究工作。zhaozs0829@163.com   
引用本文:    
赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
ZHAO Shuai, WEN Shaomu, LIAO Kexi, QIN Lin, LIN Dong, GAO Jian. Research Development on the Implementation of Non-destructive Testing Technologies in High Sulfur Natural Gas Pipelines. Materials Reports, 2025, 39(9): 24030169-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030169  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24030169
1 Qing C, Wang Y, Ren Y, et al. Zhongwai Energy, 2022, 27 (11), 49 (in Chinese).
青春, 汪洋, 任阳, 等. 中外能源, 2022, 27(11), 49.
2 Chinese National Standardization Administration. The classification of gas natural gas pool: GB/T 26979-2011, China Stardard Press, China, 2011(in Chinese).
中国国家标准化管理委员会. 天然气藏分类: GB/T26979-2011, 中国标准出版社, 2011.
3 Xun W, Wang B C, Yang L J, et al. Evaluation and Development of Oil and Gas Reservoirs, 2021, 11(4), 652 (in Chinese).
荀威, 王本成, 杨丽娟, 等. 油气藏评价与开发, 2021, 11(4), 652.
4 Deng L, Huang C, Pan D. Oil and Gas Well Testing, 2019, 28(1), 52 (in Chinese).
邓乐, 黄船, 潘登. 油气井测试, 2019, 28(1), 52.
5 Wang J Q. Complex Oil and Gas Reservoirs, 2021, 14 (1), 94 (in Chinese).
王建青. 复杂油气藏, 2021, 14(1), 94.
6 Liu Z, Wang Y, Zhai Y, et al. International Journal of Hydrogen Energy, 2022, 47, 33000.
7 Wen X, Bai P, Luo B, et al. Corrosion Science, 2018, 139, 124.
8 Ben Seghier M E A, Keshtegar B, Taleb-Berrouane M, et al. Transactions of the Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B, 2021, 147, 813.
9 Shi G Y, Yu W C, Wang K D, et al. Process Safety and Environmental Protection, Part B, 2021, 146, 432.
10 Ren L, Jiang T, Jia Z G, et al. Measurement, 2018, 122, 57.
11 An Y, Wang X, Yue B, et al. Process Safety and Environmental Protection, 2019, 130, 174.
12 Xu T, Zeng Z, Huang X, et al. Process Safety and Environmental Protection, 2021, 153, 167.
13 Bickerstaff R, Vaughn M, Stoker G, et al. Review of Sensor Technologies for In-line Inspection of Natural Gas Pipelines. Sandia National Laboratories, Albuquerque, NM, 2002.
14 Dong J, Zhang H, Liu S. Journal of Natural Gas Science and Engineering, 2019, 61, 344.
15 Ege Y, Coramik M. Measurement, 2018, 123, 163.
16 Coramik M, Ege Y. Measurement, 2017, 111, 359.
17 Clough M, Fleming M, Dixon S. NDT & E International, 2016, 86, 20.
18 Al-Barqawi H, Tarek Z. Journal of Performance of Constructed Facilities, 2006, 20, 126.
19 Meyer F H, Riggs O L, Mcglasson R L, et al. Corrosion, 1958, 14, 69.
20 Smith S N. In: the CORROSION 2015 on Dallas. Texas, 2015. pp. 5485.
21 Traidia A, Alfano M, Lubineau G, et al. International Journal of Hydrogen Energy, 2012, 37, 16214.
22 Rickard D, Luther G W I. ChemInform, Chemical reviews, 2007, 107, 514.
23 Askari M, Aliofkhazraei M, Afroukhteh S. Journal of Natural Gas Science and Engineering, 2019, 71, 102971.
24 Gao S, Jin P, Brown B, et al. Corrosion, 2017, 73, 915.
25 Manian L, Hodgdon A. Materials Performance, 2005, 44, 18.
26 Varela F, Tan M Y, Forsyth M. British Corrosion Journal, 2015, 50, 226.
27 Shaik M R. In: ASME India Oil and Gas Pipeline Conference on American Society of Mechanical Engineers. India, 2015, pp. V001T03A001.
28 Young A, Lockey A. In: ASME International Pipeline Geotechnical Conference on American Society of Mechanical Engineers. Colombia, 2013, pp. V001T02A008.
29 Lu S, Feng J, Zhang H, et al. IEEE Transactions on Industrial Informatics, 2018, 15, 213.
30 Liu B, Wu Z H, Wang P. Energy Reports, 2023, 9, 5899.
31 Bubenik T. Electromagnetic methods for detecting corrosion in underground pipelines: Magnetic flux leakage (MFL), Woodhead Publishing, UK 2014, pp. 215.
32 Yan S, Chao Z, Rui L, et al. Sensors, 2015, 15, 31036.
33 Zhang Y, Ye Z, Wang C. NDT & E International, 2009, 42, 369.
34 Li R. Oil & Gas Storage and Transportation, 2024, 43(3), 241 (in Chinese).
李睿. 油气储运, 2024, 43(3), 241.
35 Ireland R C, Torres C R. Sensors & Actuators A Physical, 2006, 129, 197.
36 Katoh M, Nishio K, Yamaguchi T. NDT & E International, 2004, 37, 603.
37 Li Y, Tian G Y, Ward S. NDT & E international, 2006, 39, 367.
38 Park G S, Park S H. IEEE Transactions on Magnetics, 2004, 40, 663.
39 Wang P, Gao Y, Tian G Y, et al. NDT & E International, 2014, 64, 7.
40 Antipov A G, Markov A A. NDT & E International, 2018, 98, 177.
41 Reddy M B, Ponnamma D, Sadasivuni K K, et al. Sensors and Actuators A: Physical, 2023, 332, 113086.
42 Hu M, Guo Q, Xi X D, et al. Materials Reports, 2023, 37(Z2), 1(in Chinese).
胡敏, 郭强, 习向东, 等. 材料导报, 2023, 37(Z2), 1.
43 Caleyo F, Alfonso L, Espina-Hernández, J H, et al. Measurement Science & Technology, 2007, 18, 1787.
44 Goedecke H. Pipeline & Gas Journal, 2003, 230, 34.
45 Lei H, Huang Z, Liang W, et al. Russian Journal of Nondestructive Testing, 2009, 45, 285.
46 Hennig T, Lokwani G. In: ASME india international oil & gas pipeline conference. India, 2015, pp. V001T03A002.
47 Hrncir T, Turner S, Polasik S J, et al. In: 2010 8th International Pipeline Conference on the Centennial Pipeline. Canada, 2010, pp. 137.
48 Ying Y, Garrett J H, Oppenheim I J, et al. American Society of Civil Engineers, 2013, 27, 667
49 Bo D, Huiping Z, Sha S, et al. In: 2007 Chinese Control Conference. Zhangjiajie, 2007, pp. 199.
50 Zhang X Y, Ma Y H, Wang J L. Contemporary Chemical Research, 2022, 35(1), 35 (in Chinese).
张祥宇, 马冶辉, 王晋鲁. 当代化工研究, 2022, 35(1), 35.
51 Huyse L, Roodselaar A V, Onderdonk J, et al. In: International Pipeline Conference. Canada, 2010, pp. 75.
52 Alers G A. In:16th World Conference on NDT. Canada, 2004, pp. 7947.
53 Mirkhani K, Chaggares C, Masterson C, et al. NDT & E International, 2004, 37, 181.
54 Na W B, Kundu T. The Acoustical Society of America, 2002, 111, 2128.
55 Miao H, Li F. Ultrasonics, 2021, 114, 106355.
56 Murayama R, Makiyama S, Kodama M, et al. Ultrasonics, 2004, 42, 825.
57 Salzburger H J, Niese F, Dobmann G. Welding in the world, 2012, 56, 35.
58 Tappert S, Allen D L, Mann A, et al. In: International Pipeline Conference. Canada, 2008, pp. 161.
59 Kania R, Klein S, Marr J, et al. In: International Pipeline Conference. Canada, 2012, pp. 73.
60 Hilvert M, Beuker T. In: ASME 2015 India International Oil and Gas Pipeline Conference. American Society of Mechanical Engineers Digital Collection. India, 2015, pp. 7940.
61 Hirao M, Ogi H. NDE & E International, 1999, 32, 127.
62 Xu P, Chen Y X, Liu L L, et al. Measurement, 2023, 206, 112213.
63 Coleman G A. In:7th International Pipeline Conference. Canada, 2008, pp. 463.
64 Jiang L, Wang L M, Zhang X Z. Sensors and Microsystems, 2020, 39(5), 11 (in Chinese).
姜磊, 王黎明, 张小章. 传感器与微系统, 2020, 39(5), 11.
65 Zhang J Y, Liu Q, Wang S, et al. Sensors and Microsystems, 2024, 43 (3), 43 (in Chinese).
张金阳, 刘倩, 王珅, 等. 传感器与微系统, 2024, 43(3), 43.
66 Zhao Y F. Research on steel plate surface defect detection system based on eddy current technology. Master’s Thesis, Shenyang University of Technology, China, 2017 (in Chinese).
赵亚飞. 基于涡流技术的钢板表面缺陷检测系统研究. 硕士学位论文, 沈阳工业大学, 2017.
67 Khalaf A H, Xiao Y, Xu N, et al, Engineering Failure Analysis, 2024, 155, 107735.
68 Shen G T. Journal of Mechanical Engineering, 2017, 53(12), 1 (in Chinese).
沈功田. 机械工程学报, 2017, 53(12), 1.
69 Yee T S, Shrifan N H M M, Al-Gburi A J A, et al. IEEE, 2022, 10, 88191.
70 Edalati K, Rastkhah N, Kermani A, et al. International Journal of Pressure Vessels & Piping, 2006, 83, 736.
71 Li C Y, Feng X Y, Li B Q. Oil and Gas Storage and Transportation, 2019, 38(2), 202 (in Chinese).
李春雨, 冯昕媛, 李本全. 油气储运, 2019, 38(2), 202.
72 Wang X L, Shuai Jian, Liu D X. Oil and Gas Storage and Transportation, 2013, 32 (6), 594 (in Chinese).
王晓霖, 帅健, 刘德绪. 油气储运, 2013, 32(6), 594.
73 Fu J M Chen G M, Gong J H, et al. Oil and Gas Storage and Transportation, 2010, 29(8), 589 (in Chinese).
付建民, 陈国明, 龚金海, 等. 油气储运, 2010, 29(8), 589.
74 Wang Z M, Lan X, Zhao J M. Corrosion and Protection, 2011, 32(10), 782(in Chinese).
王召民, 兰旭, 赵景茂. 腐蚀与防护, 2011, 32(10), 782.
75 Wang F, He R B, Han B, et al. Material Protection, 2021, 54(12), 183 (in Chinese).
王锋, 何仁碧, 韩彬, 等. 材料保护, 2021, 54(12), 183.
76 Li X, Liang Z H, Cao T Y. Contemporary Chemical Research, 2021, 136(9), 136 (in Chinese).
李霄, 梁中红, 曹廷义. 当代化工研究, 2021, 136(9), 136.
77 Wang D H, Qiu P, Lu PF, et al. Petroleum Materials and Instruments, 2023, 9(6), 71 (in Chinese).
王登海, 邱鹏, 卢鹏飞, 等. 石油管材与仪器, 2023, 9(6), 71.
78 Zhang S X, Xie F Q, Li X M, et al. Engineering Failure Analysis, 2023, 143, 106917.
[1] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[2] 龚梓桑, 胡钢. 基于磁记忆技术的海洋出水铁质文物状态评估与监测——以南海Ⅰ号出水铁器为例[J]. 材料导报, 2025, 39(2): 24030002-6.
[3] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[4] 张洪, 张宇洁, 程呈, 童凯, 邱健, 周建庭. 基于自发漏磁效应的钢丝束多点断丝损伤检测研究[J]. 材料导报, 2024, 38(15): 23040079-8.
[5] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[6] 李静, 张灵, 王昊, 陈犇, 陈东彬, 黄莹, 陈正. 碱激发矿渣混凝土密实性超声无损检测法及其影响因素[J]. 材料导报, 2024, 38(11): 22090243-7.
[7] 陈韩青, 徐志远, 屈仲毅, 曾辉, 朱长春. 蜂窝夹层结构无损检测方法研究综述[J]. 材料导报, 2024, 38(10): 22090208-15.
[8] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[9] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[10] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[11] 项赫, 姜亚明, 杨晨, 周艺颖. 基于双目视觉的纬编双轴向壳体复合材料纱线取向检测方法[J]. 材料导报, 2023, 37(14): 21110125-6.
[12] 郭晓宇, 温晓晶, 孟庆领, 王海良, 彭全敏, 张龙明. 腐蚀-荷载耦合作用下耐候桥梁钢及其焊接节点性能劣化研究进展[J]. 材料导报, 2023, 37(11): 22070019-8.
[13] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[14] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[15] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed