Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 24030002-6    https://doi.org/10.11896/cldb.24030002
  金属与金属基复合材料 |
基于磁记忆技术的海洋出水铁质文物状态评估与监测——以南海Ⅰ号出水铁器为例
龚梓桑1,2, 胡钢1,2,*
1 北京大学考古文博学院,北京 100871
2 北京大学考古科学教育部重点实验室,北京 100871
Condition Assessment and Monitoring of Marine Ironware Based on Metal Magnetic Memory Technology: a Case Study on Iron Relics from Nanhai Ⅰ Shipwreck
GONG Zisang1,2, HU Gang1,2,*
1 School of Archaeology and Museology, Peking University, Beijing 100871, China
2 MOE Key Laboratory of Archaeological Science, Peking University, Beijing 100871, China
下载:  全 文 ( PDF ) ( 5502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评估南海I号出水铁器的保存状态,运用磁记忆检测技术对铁条(锻钢)进行4通道双分量线扫,对比了置于大气环境中三年后未经保护修复和经过保护修复铁条的保存状态;对铁锅残片(过共晶白口铸铁)进行4通道单分量面扫,并与X射线照相结果进行比较。研究结果表明:磁记忆检测与X射线照相结果相匹配,良好指示裂隙、锈蚀发展区,能有效检出海洋出水铁器内部风险程度较高的应力集中区。风险位置的判据为:(1)磁场强度法向分量方向相对于基线改变,切向分量出现极值;(2)磁场梯度值高,超过检测区段均值的四倍。风险程度量化评估参数为:(1)磁记忆信号特征值,如磁场强度、磁场梯度(G)的平均值、最大值、峰-谷值等;(2)理论应力集中系数m=Gmax/Gave。量化评估参数的值越大,表明铁质文物的风险程度越高。磁记忆技术能对铁质文物病害的发生和发展进行早期预警,为海洋出水铁质文物的保存状态评估和监测、保护修复流程的安全性监测和有效性评估提供便捷有效的手段,为文物保护工作提供有力的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚梓桑
胡钢
关键词:  磁记忆  铁质文物  海洋出水铁器  南海I号  无损检测  X射线照相    
Abstract: To assess the preservation status of the iron relics from the Naihai I shipwreck, metal magnetic memory technology was used to conduct a 4-channel dual-component line scan on iron bar samples made of wrought steel and a 4-channel single-component surface scan on the iron pot fragment samples made of hypereutectic white cast iron. The preservation status of iron bars placed in the atmospheric environment for 3 years with and without conservation was compared. Metal magnetic memory testing results are in good agreement with the X-ray imaging results. Metal magnetic memory indicates the location of cracks and corrosion development zones and effectively detects the stress concentration zones of the marine ironware. In risk areas, the basic characteristics of magnetic memory data are as follows: (1) the tangential component reaches the extreme value, and the direction of the normal component of the magnetic field intensity changes; (2) the gradient value of the magnetic field intensity is high and exceeds four times the average value of the detected section. The quantitative assessment parameters of the degree of risk areas are as follows: (1) magnetic memory signal characteristics, such as the average value, maximum value, peak-valley value of the magnetic field intensity, and magnetic field gradient (G); (2) stress concentration coefficient m=Gmax/Gave. The larger the quantitative assessment parameters, the higher the degree of risk. Magnetic memory technology offers an early warning for the occurrence and development of diseases of iron relics, providing a convenient and effective means for the assessment and monitoring of the preservation status of ironware out of water, and the safety monitoring and effectiveness assessment of the conservation and restoration process, which provides a powerful support for the conservation of iron cultural relics.
Key words:  metal magnetic memory    iron cultural relic    marine ironware    Nanhai I shipwreck    non-destructive testing    X-ray imaging
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TM274  
基金资助: 国家重点研发计划(2020YFC1522100)
通讯作者:  *胡钢,北京大学考古文博学院副教授、博士研究生导师。目前主要从事文物保护研究工作。hugang@pku.edu.cn   
作者简介:  龚梓桑,北京大学考古文博学院博士研究生,在胡钢副教授的指导下进行研究。目前主要研究领域为金属文物保护、磁记忆技术在文物保护中的应用。
引用本文:    
龚梓桑, 胡钢. 基于磁记忆技术的海洋出水铁质文物状态评估与监测——以南海Ⅰ号出水铁器为例[J]. 材料导报, 2025, 39(2): 24030002-6.
GONG Zisang, HU Gang. Condition Assessment and Monitoring of Marine Ironware Based on Metal Magnetic Memory Technology: a Case Study on Iron Relics from Nanhai Ⅰ Shipwreck. Materials Reports, 2025, 39(2): 24030002-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030002  或          https://www.mater-rep.com/CN/Y2025/V39/I2/24030002
1 China Academy of Cultural Heritage, National Centre for Archaeology, Guangzhou Municipal Institute of Cultural Heritage and Archaeology. Nanhai I shipwreck archaeological report No. 2: 2014-2015 excavations, Cultural Relics Press, China, 2018, pp.498 (in Chinese).
中国文化遗产研究院, 中国国家文物局水下文化遗产保护中心, 广东省文物考古研究所. 南海Ⅰ号沉船考古报告之二: 2014-2015年发掘, 文物出版社, 2018, pp.498.
2 Dubov A A. Metal Science and Heat Treatment, 1997, 39(9-10), 401.
3 Shi P P, Su S Q, Chen Z M. Journal of Nondestructive Evaluation, 2020, 39(2), 1.
4 Dubov A A, Kolokolnikov S. Weld World, 2012, 56(3-4), 11.
5 Ren J L, Song K, Wu G H, et al. Nondestructive Testing, 2002(8), 346 (in Chinese).
任吉林, 宋凯, 邬冠华, 等. 无损检测, 2002(8), 346.
6 Huang Q R, Zhang W. Nondestructive Testing Technology, 2003(2), 14 (in Chinese).
黄清荣, 张维. 无损探伤, 2003(2), 14.
7 Zhao B X, Yao K, Wu L B, et al. Applied Sciences-Basel, 2020, 10, 7083.
8 Wan S Y, Lu D L, Zheng X K, et al. In: Sixth International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie, China, 2014, pp.795.
9 Tanasienko A G, Suntsov S I, Dubov A A. Neftyanoe Khozyaistvo, 2003, 6, 90.
10 Qiu Z C, Hong L, Yao Z J, et, al. Insight, 2019, 61, 603.
11 Pang C Y, Zhou J T, Zhao R Q, et, al. Materials, 2019, 7(12), 1167.
12 Lesiak P, Bojarczak P. In: 6th International Conference Environmental Engineering. Vilnius, 2005, pp. 744.
13 Haibo X, Jianchun F, Laibin Z, et, al. Engineering Structural Integrity: Research, Development and Application, 2007, 1-2, 249.
14 Dubov A, Kolokolnikov S. Weld World, 2013, 57, 123.
15 Dubov A, Kolokolnikov S. Weld World, 2012, 56, 11.
16 Bao S, Lou H, Fu M, Materials Evaluation, 2020, 78, 1301.
17 Abarkane C, Rios-Garcia G, Gale-Lamuela D, et al. Metals, 2019, 9, 953.
18 Zhang H, Zhou J T, Zhao R Q, et al. International Journal of Robotics & Automation, 2017, 32, 530.
19 Shi P P. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12), 3341 (in Chinese).
时朋朋. 力学学报, 2021, 53(12), 3341.
20 Shi P P, Jin K, Zhang P C, et al. IEEE Transactions on Magnetics, 2018, 54, 1.
21 Shi P P, Jin K, Zheng X. International Journal of Mechanical Sciences, 2017, 124, 229.
22 Zhang X W. Hakka Cultural Heritage Vision, 2020(1), 27 (in Chinese).
张玄微. 客家文博, 2020(1), 27.
[1] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[2] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[3] 张洪, 张宇洁, 程呈, 童凯, 邱健, 周建庭. 基于自发漏磁效应的钢丝束多点断丝损伤检测研究[J]. 材料导报, 2024, 38(15): 23040079-8.
[4] 李静, 张灵, 王昊, 陈犇, 陈东彬, 黄莹, 陈正. 碱激发矿渣混凝土密实性超声无损检测法及其影响因素[J]. 材料导报, 2024, 38(11): 22090243-7.
[5] 陈韩青, 徐志远, 屈仲毅, 曾辉, 朱长春. 蜂窝夹层结构无损检测方法研究综述[J]. 材料导报, 2024, 38(10): 22090208-15.
[6] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[7] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[8] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[9] 项赫, 姜亚明, 杨晨, 周艺颖. 基于双目视觉的纬编双轴向壳体复合材料纱线取向检测方法[J]. 材料导报, 2023, 37(14): 21110125-6.
[10] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[11] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[12] 张洪, 蒋合靖, 夏润川, 王瑰玫, 黎娅, 周建庭. 基于金属磁记忆的持荷钢绞线腐蚀检测试验研究[J]. 材料导报, 2022, 36(13): 21040232-8.
[13] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[14] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[15] 冷建成, 李政达, 王玉洁, 周临风. 循环应力对磁记忆效应影响的试验研究[J]. 材料导报, 2019, 33(10): 1723-1727.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed