Ultrasonic Non-destructive Testing Method for the Compactness of Alkali-activated Slag Concrete and Its Influencing Factors
LI Jing, ZHANG Ling, WANG Hao, CHEN Ben, CHEN Dongbin, HUANG Ying, CHEN Zheng*
Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
Abstract: The effects of water-binder ratio, modulus, alkali concentration and coarse aggregate content on the compressive strength and ultrasonic velocity of alkali-activated slag concrete were investigated, and the relationships between concrete mix proportions and density, elastic modulus, porosity were analyzed to reveal the variation mechanism of ultrasonic velocity. The results show that the ultrasonic velocity of alkali-activated slag concrete with different mix proportions is positively proportional to the elastic modulus and inversely proportional to the density and porosity. Alkali-activated slag concrete can be approximated as a homogeneous solid material for modelling and calculation in the process of ultrasonic nondestructive testing, and the ultrasonic velocity is found to be linearly related to the compressive strength. Based on the theoretical analysis and experimental results, a model for calculating the compactness of alkali-activated slag concrete is established, which can be used as a reference for the compactness testing of alkali-activated slag concrete.
1 Chen W, Li B, Wang J, et al. Cement and Concrete Research, 2021, 141, 106322. 2 Provis J L, Palomo A, Shi C. Cement and Concrete Research, 2015, 78, 110. 3 Yang L X. Cement, 1992(8), 40 (in Chinese). 杨立信. 水泥, 1992(8), 40. 4 Yang N R. Journal of the Chinese Ceramic Society, 1996(4), 459 (in Chinese). 杨南如. 硅酸盐学报. 1996(4), 459. 5 Yang N R. Journal of the Chinese Ceramic Society, 1996(2), 209 (in Chinese). 杨南如. 硅酸盐学报, 1996(2), 209. 6 Yang Y M. Design and engineering application of highly seawater corrosion resistant geopolymer concrete reinforced by BFRP bar. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese). 杨永民. 高抗海水侵蚀玄武岩纤维筋增强地质聚合物混凝土的研究与工程应用. 博士学位论文, 华南理工大学, 2018. 7 Frank C, Sanjayan J G. Cement and Concrete Research, 2000, 30(9), 1401. 8 Zhang B, Zhu H, Shah K W, et al. Construction and Building Mate-rials, 2021, 284, 122805. 9 Mohammed T U, Rahman M N. Construction and Building Materials, 2016, 125, 832. 10 Ran Q F. Nondestructive Testing, 1999(2), 75 (in Chinese). 冉启芳. 无损检测, 1999(2), 75. 11 Silva R R, Goncalves R, Bertoldo C. Construction and Building Mate-rials, 2020, 262, 120010. 12 Goueygou M, Piwakowski B, Naffa S O, et al. Ultrasonics, 2002, 40(1-8), 77. 13 Tharmaratnam K, Tan B S. Cement and Concrete Research, 1990, 20(3), 335. 14 Hernández M, Izquierdo M, Ibáñez A, et al. Ultrasonics, 2000, 38(1-8), 531. 15 Bogas J A, Gomes M G, Gomes A. Ultrasonics, 2013, 53(5), 962. 16 Yaman I O, Aktan H M, Hearn N. Materials and Structures, 2002, 35(2), 110. 17 Güclüer K. Journal of Building Engineering, 2020, 27, 100949. 18 Hnin S W, Sancharoen P, Tangtermsirikul S. Materials Science Forum, 2016, 866, 68. 19 Li J. The composition and microstructure of slag-based cementitious material activated by sodium hydroxide and modified water glass and their influence on its carbonation and drying shrinkage performance. Ph. D. Thesis, South China University of Technology, China, 2020 (in Chinese). 李静. 氢氧化钠-矿渣和改性水玻璃-矿渣胶凝材料的组成与结构及其对碳化和干缩性能的影响. 博士毕业论文, 华南理工大学, 2020. 20 Nik A S, Omran O L. Construction and Building Materials, 2013, 44, 654. 21 Loosveldt H. Etude expérimentale des comportements hydrauliques et poromecaniques d'un mortier s-ain ou dégradé chimiquement. Ph. D. Thesis, Ecole Centrale de Lille, France, 2002. 22 He J, Yang C H. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(3), 147 (in Chinese). 何娟, 杨长辉. 土木建筑与环境工程, 2011, 33(3), 147. 23 Liu J, Sun Z L, Rong X, et al. Journal of Hebei University of Technology, 2005(5), 47 (in Chinese). 刘杰, 孙志亮, 戎贤, 等. 河北工业大学学报, 2005(5), 47. 24 Chen Z, Chen B, Zheng J L, et al. China Civil Engineering Journal, 2021, 54(8), 1 (in Chinese). 陈正, 陈犇, 郑皆连, 等. 土木工程学报, 2021, 54(8), 1. 25 Bogas J A, Gomes M G, Gomes A. Ultrasonics, 2013, 53(5), 962. 26 Wan X M, Zhang Y, Zhao T J, et al. Materials Reports, 2018, 32(12), 2091 (in Chinese). 万小梅, 张宇, 赵铁军, 等. 材料导报, 2018, 32(12), 2091. 27 Abo-Qudais S A. Construction and Building Materials, 2005, 19(4), 257. 28 Xia J. Research on mix proportion of alkali-activated slag concrete. Master's Thesis, Chongqing Un-iversity, China, 2013 (in Chinese). 夏婧. 碱矿渣混凝土配合比设计研究. 硕士学位论文, 重庆大学, 2013. 29 Shi J H, Shi C J, Ouyang X, et al. Materials Reports, 2021, 35(3), 3067 (in Chinese). 史金华, 史才军, 欧阳雪, 等. 材料导报, 2021, 35(3), 3067. 30 Ma Q M, Yang J B, Zhu X K, et al. New Building Materials, 2019, 46(3), 1 (in Chinese). 马倩敏, 杨进波, 朱修昆, 等. 新型建筑材料, 2019, 46(3), 1. 31 Su J, Shi C J, Huang Z E, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2416 (in Chinese). 苏捷, 史才军, 黄泽恩, 等. 硅酸盐学报, 2021, 49(11), 2416. 32 Lafhaj Z, Goueygou M, Djerbi A, et al. Cement and Concrete Research, 2006, 36(4), 625.