Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22090243-7    https://doi.org/10.11896/cldb.22090243
  无机非金属及其复合材料 |
碱激发矿渣混凝土密实性超声无损检测法及其影响因素
李静, 张灵, 王昊, 陈犇, 陈东彬, 黄莹, 陈正*
广西大学土木建筑工程学院,工程防灾与结构安全教育部重点实验室,南宁 530004
Ultrasonic Non-destructive Testing Method for the Compactness of Alkali-activated Slag Concrete and Its Influencing Factors
LI Jing, ZHANG Ling, WANG Hao, CHEN Ben, CHEN Dongbin, HUANG Ying, CHEN Zheng*
Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 8723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了碱激发矿渣混凝土水胶比、模数、碱当量及粗骨料含量对其抗压强度、超声波速的影响,并通过分析混凝土配合比参数与密度、弹性模量、孔隙率之间的关系来揭示超声波速的变化机理。结果表明:不同配合比参数的碱激发矿渣混凝土超声波速与弹性模量成正比,与密度、孔隙率成反比,在超声无损检测过程中可将碱激发矿渣混凝土近似作为均质性实体材料进行建模计算,发现其超声波速与抗压强度呈线性关系。基于理论分析与试验结果建立了碱激发矿渣混凝土的密实性计算模型,可以为检测碱激发矿渣混凝土密实性作参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李静
张灵
王昊
陈犇
陈东彬
黄莹
陈正
关键词:  碱激发矿渣混凝土  抗压强度  超声波速  无损检测  密实性    
Abstract: The effects of water-binder ratio, modulus, alkali concentration and coarse aggregate content on the compressive strength and ultrasonic velocity of alkali-activated slag concrete were investigated, and the relationships between concrete mix proportions and density, elastic modulus, porosity were analyzed to reveal the variation mechanism of ultrasonic velocity. The results show that the ultrasonic velocity of alkali-activated slag concrete with different mix proportions is positively proportional to the elastic modulus and inversely proportional to the density and porosity. Alkali-activated slag concrete can be approximated as a homogeneous solid material for modelling and calculation in the process of ultrasonic nondestructive testing, and the ultrasonic velocity is found to be linearly related to the compressive strength. Based on the theoretical analysis and experimental results, a model for calculating the compactness of alkali-activated slag concrete is established, which can be used as a reference for the compactness testing of alkali-activated slag concrete.
Key words:  alkali-activated slag concrete    compressive strength    ultrasonic velocity    non-destructive testing    compactness
发布日期:  2024-06-25
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52108199);广西自然科学基金(2021GXNSFBA075014);广西科技基地和人才专项项目(AD21238007)
通讯作者:  *陈正,广西大学土木建筑工程学院教授、博士研究生导师,国家高层次青年人才计划入选者。目前主要从事混凝土性能调控与设计及钢筋锈蚀防控方面的研究。主持国家自然科学基金项目3项,在Cement and Concrete Research、Corrosion Science、《土木工程学报》等国内外顶级期刊上发表论文109篇。chenzheng@gxu.edu.cn   
作者简介:  李静,2020年博士毕业于华南理工大学,现为广西大学土木建筑工程学院副教授、博士研究生导师。目前主要从事新型建筑材料方面的研究,主持国家自然科学基金项目1项,省部级基金2项。
引用本文:    
李静, 张灵, 王昊, 陈犇, 陈东彬, 黄莹, 陈正. 碱激发矿渣混凝土密实性超声无损检测法及其影响因素[J]. 材料导报, 2024, 38(11): 22090243-7.
LI Jing, ZHANG Ling, WANG Hao, CHEN Ben, CHEN Dongbin, HUANG Ying, CHEN Zheng. Ultrasonic Non-destructive Testing Method for the Compactness of Alkali-activated Slag Concrete and Its Influencing Factors. Materials Reports, 2024, 38(11): 22090243-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090243  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22090243
1 Chen W, Li B, Wang J, et al. Cement and Concrete Research, 2021, 141, 106322.
2 Provis J L, Palomo A, Shi C. Cement and Concrete Research, 2015, 78, 110.
3 Yang L X. Cement, 1992(8), 40 (in Chinese).
杨立信. 水泥, 1992(8), 40.
4 Yang N R. Journal of the Chinese Ceramic Society, 1996(4), 459 (in Chinese).
杨南如. 硅酸盐学报. 1996(4), 459.
5 Yang N R. Journal of the Chinese Ceramic Society, 1996(2), 209 (in Chinese).
杨南如. 硅酸盐学报, 1996(2), 209.
6 Yang Y M. Design and engineering application of highly seawater corrosion resistant geopolymer concrete reinforced by BFRP bar. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese).
杨永民. 高抗海水侵蚀玄武岩纤维筋增强地质聚合物混凝土的研究与工程应用. 博士学位论文, 华南理工大学, 2018.
7 Frank C, Sanjayan J G. Cement and Concrete Research, 2000, 30(9), 1401.
8 Zhang B, Zhu H, Shah K W, et al. Construction and Building Mate-rials, 2021, 284, 122805.
9 Mohammed T U, Rahman M N. Construction and Building Materials, 2016, 125, 832.
10 Ran Q F. Nondestructive Testing, 1999(2), 75 (in Chinese).
冉启芳. 无损检测, 1999(2), 75.
11 Silva R R, Goncalves R, Bertoldo C. Construction and Building Mate-rials, 2020, 262, 120010.
12 Goueygou M, Piwakowski B, Naffa S O, et al. Ultrasonics, 2002, 40(1-8), 77.
13 Tharmaratnam K, Tan B S. Cement and Concrete Research, 1990, 20(3), 335.
14 Hernández M, Izquierdo M, Ibáñez A, et al. Ultrasonics, 2000, 38(1-8), 531.
15 Bogas J A, Gomes M G, Gomes A. Ultrasonics, 2013, 53(5), 962.
16 Yaman I O, Aktan H M, Hearn N. Materials and Structures, 2002, 35(2), 110.
17 Güclüer K. Journal of Building Engineering, 2020, 27, 100949.
18 Hnin S W, Sancharoen P, Tangtermsirikul S. Materials Science Forum, 2016, 866, 68.
19 Li J. The composition and microstructure of slag-based cementitious material activated by sodium hydroxide and modified water glass and their influence on its carbonation and drying shrinkage performance. Ph. D. Thesis, South China University of Technology, China, 2020 (in Chinese).
李静. 氢氧化钠-矿渣和改性水玻璃-矿渣胶凝材料的组成与结构及其对碳化和干缩性能的影响. 博士毕业论文, 华南理工大学, 2020.
20 Nik A S, Omran O L. Construction and Building Materials, 2013, 44, 654.
21 Loosveldt H. Etude expérimentale des comportements hydrauliques et poromecaniques d'un mortier s-ain ou dégradé chimiquement. Ph. D. Thesis, Ecole Centrale de Lille, France, 2002.
22 He J, Yang C H. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(3), 147 (in Chinese).
何娟, 杨长辉. 土木建筑与环境工程, 2011, 33(3), 147.
23 Liu J, Sun Z L, Rong X, et al. Journal of Hebei University of Technology, 2005(5), 47 (in Chinese).
刘杰, 孙志亮, 戎贤, 等. 河北工业大学学报, 2005(5), 47.
24 Chen Z, Chen B, Zheng J L, et al. China Civil Engineering Journal, 2021, 54(8), 1 (in Chinese).
陈正, 陈犇, 郑皆连, 等. 土木工程学报, 2021, 54(8), 1.
25 Bogas J A, Gomes M G, Gomes A. Ultrasonics, 2013, 53(5), 962.
26 Wan X M, Zhang Y, Zhao T J, et al. Materials Reports, 2018, 32(12), 2091 (in Chinese).
万小梅, 张宇, 赵铁军, 等. 材料导报, 2018, 32(12), 2091.
27 Abo-Qudais S A. Construction and Building Materials, 2005, 19(4), 257.
28 Xia J. Research on mix proportion of alkali-activated slag concrete. Master's Thesis, Chongqing Un-iversity, China, 2013 (in Chinese).
夏婧. 碱矿渣混凝土配合比设计研究. 硕士学位论文, 重庆大学, 2013.
29 Shi J H, Shi C J, Ouyang X, et al. Materials Reports, 2021, 35(3), 3067 (in Chinese).
史金华, 史才军, 欧阳雪, 等. 材料导报, 2021, 35(3), 3067.
30 Ma Q M, Yang J B, Zhu X K, et al. New Building Materials, 2019, 46(3), 1 (in Chinese).
马倩敏, 杨进波, 朱修昆, 等. 新型建筑材料, 2019, 46(3), 1.
31 Su J, Shi C J, Huang Z E, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2416 (in Chinese).
苏捷, 史才军, 黄泽恩, 等. 硅酸盐学报, 2021, 49(11), 2416.
32 Lafhaj Z, Goueygou M, Djerbi A, et al. Cement and Concrete Research, 2006, 36(4), 625.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[3] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[4] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[5] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[6] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[7] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[10] 黄正峰, 欧忠文, 罗伟, 王飞, 王廷福. 聚醚型减缩剂延缓水泥水化的机理分析[J]. 材料导报, 2024, 38(10): 22060030-5.
[11] 陈韩青, 徐志远, 屈仲毅, 曾辉, 朱长春. 蜂窝夹层结构无损检测方法研究综述[J]. 材料导报, 2024, 38(10): 22090208-15.
[12] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[13] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[14] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[15] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed