Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 23030113-11    https://doi.org/10.11896/cldb.23030113
  金属与金属基复合材料 |
铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展
丁茜1, 李海波1, 廖俊生2,*
1 表面物理与化学重点实验室,四川 绵阳 621700
2 中国工程物理研究院材料研究所,四川 绵阳 621700
Research Progress on Oxidative Corrosion for Uranium and Uranium-Niobium Alloys in Moist Environments
DING Qian1, LI Haibo1, LIAO Junsheng2,*
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621700, Sichuan, China
2 Institute of Material Science, Chinese Academic of Engineering and Physics, Mianyang 621700, Sichuan, China
下载:  全 文 ( PDF ) ( 11710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铀及铀合金是重要的核工业材料,在国防科技和核能领域具有广泛应用。金属铀的化学性质非常活泼,极易被环境气氛中的O2、H2O等气体氧化腐蚀,尤其是当H2O存在时更易失效,导致其力学性能和核反应性能降低。铀铌合金作为一种重要的铀合金材料,具有良好的抗腐蚀性,但仍难以避免长期贮存过程中的表面氧化腐蚀。经过国内外数十年的研究,铀材料在典型气氛中的腐蚀规律已较为明确,但对其腐蚀机理的深入认识一直存在分歧。本文归纳和总结了铀及铀铌合金在水汽、水氧混合气氛等潮湿环境中的腐蚀行为研究工作,讨论和评述了各反应阶段的腐蚀机理,最后对铀及铀铌合金在潮湿气氛中的氧化动力学,H2O和O2在铀材料表面的吸附解离、微观扩散机制及UH3等中间产物的演化等方面进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁茜
李海波
廖俊生
关键词:    铀铌合金  潮湿气氛  腐蚀行为  腐蚀机理    
Abstract: Uranium and uranium alloys are important materials for the nuclear industry, which are widely used in the fields of defense science and technology and nuclear energy. Uranium metal is highly susceptible to oxidation during storage due to its high chemical reactivity, resulting a decline of mechanical properties and nuclear reaction performance. And it is more prone to failure, especially when H2O exists. As an important type of uranium alloy material, uranium-niobium alloy has decent corrosion resistance. Unfortunately, it is still difficult to avoid surface oxidative corrosion during long-term storage. After decades of research at home and abroad, the corrosion law of uranium materials in typical atmospheres has been relatively clear, but consensus on the in-depth understanding of the corrosive mechanism has not entirely been reached yet. This paper summarizes and concludes the research work on the corrosive behavior of uranium and uranium-niobium alloys in humid environments such as anoxic and oxygenated water vapor. The corrosive mechanisms at each reaction stage are discussed and reviewed. Finally, we provide research perspectives on several controversial scientific issues, including the oxidative kinetics of uranium and uranium-niobium alloys in moist atmospheres, the adsorption and dissociation of H2O and O2 on the surface of uranium materials, the microscopic diffusion mechanisms and the evolution of intermediates such as UH3.
Key words:  uranium    U-Nb alloys    moist environments    oxidative corrosion    corrosive mechanism
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TJ91  
  O647  
基金资助: 国家自然科学基金(22073084)
通讯作者:  *廖俊生,中国工程物理研究院材料研究所研究员、博士研究生导师。2004年博士毕业于中国工程物理研究院。目前主要从事表面物理化学、辐射防护与环境保护等方面的研究工作。发表论文30余篇,包括Biosensors and Bioelectronics、ACS Applied Materials & Interfaces、Applied Surface Science、Journal of Materials Chemistry C等。jshliao711@126.com   
作者简介:  丁茜,2017年7月于清华大学获得工学学士学位。现为中国工程物理研究院材料研究所辐射防护与环境保护专业博士研究生,在廖俊生研究员的指导下进行研究。目前主要研究领域为核材料表面腐蚀机理。
引用本文:    
丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
DING Qian, LI Haibo, LIAO Junsheng. Research Progress on Oxidative Corrosion for Uranium and Uranium-Niobium Alloys in Moist Environments. Materials Reports, 2024, 38(12): 23030113-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030113  或          http://www.mater-rep.com/CN/Y2024/V38/I12/23030113
1 Haschke J M. Journal of Alloys and Compounds, 1998, 278(1-2), 149.
2 Banos A, Burrows R, Scott T B. Coordination Chemistry Reviews, 2021, 439, 213899.
3 Xiong B T, Meng D Q, Yang W C. Atomic Energy Science and Technology, 2005, 39(3), 226 (in Chinese).
熊必涛, 蒙大桥, 杨维才. 原子能科学技术, 2005, 39(3), 226.
4 Ritchie A G. Journal of Nuclear Materials, 1981, 102(1-2), 170.
5 Pearce R J. Central Electricity Generating Board, 1989, 89, 6231.
6 Hilton B A. Review of oxidation rates of DOE spent nuclear fuel:Part 1:nuclear fuel, Argonne National Laboratory, US, 2000, pp. 17.
7 Banos A, Scott T B. Journal of Hazardous Materials, 2020, 399, 122763.
8 Colmenares C, Howell R, McCreary T. In:The 10th DOE conference of surface studies and 5th SUBWOB-12B technical exchange, US, 1981, pp. 8.
9 Delegard C H, Schmidt A J. Uranium metal reaction behavior in water, sludge, and grout matrices, Pacific Northwest National Laboratory, US, 2008.
10 McGillivray G W, Geeson D A, Greenwood R C. Journal of Nuclear Materials, 1994, 208(1-2), 81.
11 Baker M M, Less L N, Orman S. Transactions of the Faraday Society, 1966, 62, 2525.
12 Greenholt C J, Weirick L J. Journal of Nuclear Materials, 1987, 144(1-2), 110.
13 Corcoran V J, Johnston C, Metcalfe W J, et al. The water vapour corrosion of uranium and its prevention, Atomic Weapons Research Establishment, UK, 1965, pp. 5.
14 Baker M M, Bleloch J W, Less N, et al. Uranium compatibility studies. Part 3. The influence of oxygen on the uranium-water reaction, Atomic Weapons Research Establishment, UK, 1964, pp. 9.
15 Kaminski M. Batch Tests with unirradiated uranium metal fuel program report, Argonne National Laboratory, US, 2001, pp. 3.
16 Allen G C, Tucker P M, Lewis R A. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics, 1984, 80(8), 991.
17 Colmenares C A. Progress in Solid State Chemistry, 1984, 15(4), 257.
18 Ritchie A G. Journal of Nuclear Materials, 1984, 120(2-3), 143.
19 Baker M M, Less L N, Orman S. Transactions of the Faraday Society, 1966, 62, 2513.
20 Totemeier T C. A review of the corrosion and pyrophoricity behavior of uranium and plutonium, Argonne National Laboratory, US, 1995, pp. 6.
21 Banos A, Harker N J, Scott T B. Corrosion Science, 2018, 136, 129.
22 Frank J W, Roebuck A H. Crevice corrosion of uranium and uranium alloys, Argonne National Laboratory, US, 1955, pp. 4.
23 Abrefah J, Sell R L. Oxidation of K-west basin spent nuclear fuel in moist helium atmosphere, Pacific Northwest National Laboratory, US, 1999, DOI:10.2172/7698.
24 Bennett M J, Myatt B L, Silvester D R V, et al. Journal of Nuclear Materials, 1975, 57(2), 221.
25 Totemeier T C, Pahl R G, Frank S M. Journal of Nuclear Materials, 1999, 265(3), 308.
26 Qin J W, Luo L Z, Shuai M B. Materials Reports A:Review Papers, 2017, 31(7), 17 (in Chinese).
秦建伟, 罗丽珠, 帅茂兵. 材料导报:综述篇, 2017, 31(7), 17.
27 Wu Y P, Zhu S F, Liu T W, et al. Journey of Nuclear and Radiochemistry, 2014, 36(6), 321 (in Chinese).
吴艳萍, 朱生发, 刘天伟, 等. 核化学与放射化学, 2014, 36(6), 321.
28 Kondo T, Beck F H, Fontana M G. Corrosion, 1974, 30(9), 330.
29 Hopkinson B E. Journal of the Electrochemical Society, 1959, 106(2), 102.
30 Zalkind S, Eshkenazy R, Harush S, et al. Journal of Nuclear Materials, 1994, 209, 169.
31 Kondo T, Verink E D, Beck F H, et al. Corrosion, 1964, 20(10), 314t.
32 Haschke J M, Stakebake J L. The chemistry of the actinide and transacti-nide elements, Morss L R, Edelstein N M, Fuger J, ed., Springer, 2010, pp.3199.
33 Waber J T, O'Rourke J A, Kleinberg R. Journal of the Electrochemical Society, 1959, 106(2), 96.
34 Yang J R. Study on oxidation kinetics of U-2.5wt%Nb alloy and effect of environmental corrosion on mechanical properties. Ph. D. Thesis, Graduate School of China Academy of Engineering Physics, China, 2007 (in Chinese).
杨江荣. U-2.5wt%Nb合金的氧化动力学与环境气氛腐蚀对力学性能的影响研究. 博士学位论文, 中国工程物理研究院, 2007.
35 Yang J, Wang X, Luo L, et al. Surface and Interface Analysis, 2008, 40(3-4), 299.
36 Cathcart J V, Pawel R E, Petersen G F. Oxidation of Metals, 1971, 3(6), 497.
37 Antill J E, Peakall K A. Journal of the Less Common Metals, 1961, 3(3), 239.
38 Cathcart J V, Petersen G F. Journal of Nuclear Materials, 1972, 43(2), 8.
39 Manner W L, Lloyd J A, Hanrahan R J, et al. Applied Surface Science, 1999, 150(1-4), 73.
40 Winer K, Colmenares C A, Smith R L, et al. Surface Science, 1987, 183(1-2), 67.
41 Allen G C, Tucker P M. Dalton Transactions, 1973, 1973(5), 470.
42 Shamir N, Tiferet E, Zalkind S, et al. Surface Science, 2006, 600(3), 657.
43 Nornes S B, Meisenheimer R G. Surface Science, 1979, 88(1), 191.
44 Tiferet E, Zalkind S, Mintz M H, et al. Surface Science, 2007, 601(4), 936.
45 Manner W L, Lloyd J A, Paffett M T. Journal of Nuclear Materials, 1999, 275(1), 37.
46 Balooch M, Hamza A V. Journal of Nuclear Materials, 1996, 230(3), 259.
47 Lloyd J A, Manner W L, Paffett M T. Surface Science, 1999, 423(2-3), 265.
48 Danon A, Koresh J E, Mintz M H. Langmuir, 1999, 15(18), 5913.
49 Mintz M H, Shamir N. Applied Surface Science, 2005, 252(3), 633
50 Tiferet E, Mintz M H, Zalkind S, et al. Journal of Alloys and Compounds, 2007, 444-445(Complete), 177.
51 Cohen S, Mintz M H, Zalkind S, et al. Solid State Ionics, 2014, 263, 39.
52 Senanayake S D, Idriss H. Surface Science, 2004, 563(1-3), 135.
53 Stultz J, Paffett M T, Joyce S A. The Journal of Physical Chemistry B, 2004, 108(7), 2362.
54 Idriss H. Surface Science Reports, 2010, 65(3), 67.
55 Senanayake S D, Rousseau R, Colegrave D, et al. Journal of Nuclear Materials, 2005, 342(1-3), 179.
56 Senanayake S D, Waterhouse G I N, Chan A S Y, et al. Catalysis Today, 2007, 120(2), 151.
57 Fuller E L, Smyrl N R, Condon J B, et al. Journal of Nuclear Materials, 1984, 120(2-3), 174.
58 Liu Z X. The adsorption and dissociation of oxygen-contained gas molecule on uranium surface:a first-principle study. Master's Thesis, Hunan University, China, 2012 (in Chinese).
刘智骁. 含氧气体分子在铀表面吸附与解离特性的第一性原理研究. 硕士学位论文, 湖南大学, 2012.
59 Liu Z X, Deng H Q, Hu W Y. The Chinese Journal of Nonferrous Metals, 2013, 23(4), 1160 (in Chinese).
刘智骁, 邓辉球, 胡望宇. 中国有色金属学报, 2013, 23(4), 1160.
60 Li G, Yu H L, Yin C. Rare Metal Materials and Engineering, 2014, 43(1), 85 (in Chinese).
李赣, 余慧龙, 银陈. 稀有金属材料与工程, 2014, 43(1), 85.
61 Niu J L. First-principles study of surface adsorption on diamond and uranium. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2008 (in Chinese).
聂锦兰. 金刚石和铀表面吸附特性的第一性原理研究. 博士学位论文, 电子科技大学, 2008.
62 Skomurski F N, Shuller L C, Ewing R C, et al. Journal of Nuclear Materials, 2008, 375(3), 290.
63 Bo T, Lan J H, Zhao Y L, et al. Journal of Nuclear Materials, 2014, 454(1-3), 446.
64 Tegner B E, Molinari M, Kerridge A, et al. The Journal of Physical Chemistry C, 2017, 121(3), 1675.
65 Bo T, Lan J H, Wang C Z, et al. The Journal of Physical Chemistry C, 2014, 118(38), 21935.
66 Wellington J P W, Tegner B E, Collard J, et al. The Journal of Physical Chemistry C, 2018, 122(13), 7149.
67 Tian X, Wang H, Xiao H, et al. Computational Materials Science, 2014, 91, 364.
68 Maldonado P, Evins L Z, Oppeneer P M. The Journal of Physical Che-mistry C, 2014, 118(16), 8491.
69 Rák Z, Ewing R C, Becker U. Surface Science, 2013, 608(Complete), 180.
70 Wang S, Li H, Li G, et al. Corrosion Science, 2022, 206, 110487.
71 Grimes J H, Morris J R. Uranium corrosion studies. Part I. An optical method for following oxide formation, Atomic Weapons Research Establishment, UK, 1965, pp. 10.
72 Grimes J H, Morris J R. Uranium corrosion studies. Part 2. The rate of reaction of polished uranium and water vapour at various temperatures, Atomic Weapons Research Establishment, UK, 1965, pp. 6.
73 Li H, Ding Q, Gu Y, et al. Corrosion Science, 2020, 176, 108879.
74 Contamin P, Bacmann J J, Martin J F. Journal of Nuclear Materials, 1972, 42(1), 54.
75 Orman S. Uranium compatibility studies. Part I. The interaction of ura-nium with gas-free water and water vapour, Atomic Weapons Research Establishment, UK, 1963, pp. 4.
76 ColbyL J. Journal of the Less Common Metals, 1966, 10(6), 425.
77 Santon J P. A kinetic study of the reaction of water vapor and carbon dio-xide on uranium, Commissariat a l'Energie Atomique, France, 1964, pp.50.
78 Cristy S S, Condon J B. In:Secondary Ion Mass Spectrometry SIMS V, Benninghoven A, Condon R J, Simons D S, Werner H W, ed., Springer, Germany, 1986, pp. 405.
79 Martin T L, Coe C, Bagot P A J, et al. Scientific Reports, 2016, 6(1), 1.
80 Banos A, Hallam K R, Scott T B. Corrosion Science, 2019, 152, 249.
81 Banos A, Hallam K R, Scott T B. Corrosion Science, 2019, 152, 261.
82 Banos A, Jowsey J, Adamska A, et al. Journal of Nuclear Materials, 2020, 535(1), 152178.
83 Harker N J. The corrosion of uranium in sealed environments containing oxygen and water vapour. Ph. D. Thesis, University of Bristol, UK, 2012.
84 Haschke J M, Allen T H, Morales L A. Journal of Alloys and Compounds, 2001, 314(1-2), 78.
85 Weirick L J. Oxidation of uranium in low partial pressures of oxygen and water vapor at 100 ℃, Sandia National Laboratory, US, 1984, pp. 25.
86 Li H, Zhong H, Gu Y, et al. Journal of Alloys and Compounds, 2018, 763(1), 153.
87 Schweke D, Maimon C, Chernia Z, et al. Journal of Applied Physics, 2012, 112(9), 8.
88 Idell Y, Siekhaus W, McLean W. Microscopy and Microanalysis, 2019, 25(S2), 1550.
89 Lin S Q, Lai X C, Lyu X C, et al. Journal of Nuclear and Radiochemistry, 2008, 30(2), 125 (in Chinese).
林斯勤, 赖新春, 吕学超, 等. 核化学与放射化学, 2008, 30(2), 125.
90 Idell Y, Au B, Jaycox A, et al. Measurement Science and Technology, 2020, 31(10), 10.
91 Winski D N. Design and construction of a polarization modulated infrared reflection absorption spectrometer and validation with carbon monoxide adsorption on a platinum (100) surface. Master's Thesis, University of Delaware, USA, 2009.
92 Krooswyk J D. Development of polarization-dependent infrared spectroscopy for studies of catalytic reactions on Pt(111). Ph. D. Thesis, University of Illinois at Chicago, USA, 2016.
93 Yu M. Studies on molecular adsorption and reaction on Ni(110) oxidized surface using UHV-FTIRS. Ph. D. Thesis, Shandong University, China, 2019 (in Chinese).
余敏. 单晶Ni(110)氧化表面分子吸附与反应的超高真空-红外光谱研究. 博士学位论文, 山东大学, 2019.
94 Cao Y J, Yu M, Qi S D, et al. The Journal of Physical Chemistry C, 2018, 122(41), 23441.
95 Cao Y J, Yu M, Qi S D, et al. Scientific Reports, 2017, 7, 43442.
96 Qu X, Li R S, He B, et al. Chinese Physics B, 2018, 27(7), 076501.
97 Qu X, He B, Li R, et al. Journal of Radioanalytical and Nuclear Che-mistry, 2018, 317(2), 1013.
98 Becker U, Rosso K M, Hochella M F J. Geochimica et Cosmochimica Acta, 2001, 65(16), 2641.
99 Wang X, Ji H, Li Z, et al. The Journal of Physical Chemistry C, 2021, 125(17), 9364.
100 Magnani N J. Reaction of uranium and its alloys with water vapor at low temperatures, Sandia Laboratories, US, 1974, pp. 5.
101 Burke J J. Physical Metallurgy of Uranium Alloys, Brook Hill Publishing Company, USA, 1976, pp. 815.
102 Kelly D, Lillard J A, Manner W L, et al. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2001, 19(4), 1959.
103 Yang Y, Zhang P. Journal of Physics:Condensed Matter, 2015, 27(17), 175005.
104 Chen X L. The relationship between the microstructural character and corrosion behavior in the U-Nb system. Ph. D. Thesis, China Academy of Engineering Physics, China, 2020 (in Chinese).
陈向林. 铀铌合金中显微组织对电化学和氢化腐蚀行为的影响研究. 博士学位论文, 中国工程物理研究院, 2020.
105 Lu L. Electron energy loss spectroscopy study on surface oxidation behavior of uranium-niobium alloys. Master's Thesis,China Academy of Engineering Physics, China, 2003 (in Chinese).
陆雷. 铀铌合金表面氧化行为的电子能量损失谱研究. 硕士学位论文, 中国工程物理研究院, 2003.
106 Fu X, Liu K, Wang X, et al. Surface Review and Letters, 2003, 10(2-3), 381.
[1] 付晓辉, 李冠超, 王昱莹, 李小燕, 黄希, 刘小亮, 胡伟芳. 维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理[J]. 材料导报, 2024, 38(4): 22040208-6.
[2] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[3] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[4] 郭晓宇, 温晓晶, 孟庆领, 王海良, 彭全敏, 张龙明. 腐蚀-荷载耦合作用下耐候桥梁钢及其焊接节点性能劣化研究进展[J]. 材料导报, 2023, 37(11): 22070019-8.
[5] 吴学志, 尹邦跃. 特种反应堆用亚化学计量UO2-x燃料O/U比调控与机理研究[J]. 材料导报, 2022, 36(Z1): 21110113-4.
[6] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[7] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[8] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[9] 李小燕, 付晓辉, 李冠超, 王昱莹, 黄希, 刘小亮, 胡伟芳, 刘义保. 岩棉负载纳米零价铁去除溶液中U(Ⅵ)的性能和机理[J]. 材料导报, 2022, 36(20): 22040131-7.
[10] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[11] 孙永菊, 陈建伟, 梅华平, 刘静, 李桃生, 吴庆生. 氮化铀(UN)粉末合成工艺分析[J]. 材料导报, 2021, 35(19): 19036-19040.
[12] 孙有美, 赵全成, 李茜, 王玲, 佘祖新, 王长朋. FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理[J]. 材料导报, 2021, 35(18): 18182-18189.
[13] 吴世杰, 刘丽霞, 彭军, 王晓丽, 焦海东, 霍启男. 珠光体组织对重轨钢U71Mn腐蚀行为的影响[J]. 材料导报, 2021, 35(12): 12147-12155.
[14] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[15] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed