Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18182-18189    https://doi.org/10.11896/cldb.20070290
  高分子与聚合物基复合材料 |
FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理
孙有美1,2,3, 赵全成1,4, 李茜1,2, 王玲1,3, 佘祖新1,3, 王长朋1,4
1 西南技术工程研究所,重庆 400039
2 海南万宁大气环境材料腐蚀国家野外科学观测研究站,万宁 571522
3 环境效应与防护重庆市重点实验室,重庆 400039
4 弹药贮存环境效应重点实验室,重庆 400039
Mechanical Properties and Corrosion Mechanism of the FN04Mo on 7 Kinds of Typical Atmospheric Environment
SUN Youmei1,2,3, ZHAO Quancheng1,4, LI Qian1,2, WANG Ling1,3, SHE Zuxin1,3, WANG Changpeng1,4
1 Southwest Institute of Technology and Engineering, Chongqing 400039, China
2 Hainan Wanning Atmospheric Material Corrision Field National Observation and Research Station, Wanning 571522, China
3 Chongqing Key Laboratory of Environmental Effect and Protection, Chongqing 400039, China
4 CSGC Key Laboratory of Ammunition Storage Environmental Effects, Chongqing 400039, China
下载:  全 文 ( PDF ) ( 21808KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过金属注塑成型方法制备了FN04Mo样品,并采用电液伺服试验机、X射线衍射分析、扫描电子显微镜、能谱分析仪等对FN04Mo在万宁站、漠河站、敦煌站、拉萨站、江津站、西双版纳站、永兴站七种典型大气环境下的力学性能规律和腐蚀机理进行了研究。研究结果表明,FN04Mo腐蚀初期(1~3个月)力学性能变化呈现明显的下降趋势,试验至3~18个月后其力学性能基本保持稳定。FN04Mo在七种典型大气暴露试验1年后,样品表面均布满腐蚀产物,表面腐蚀形态为点蚀。FN04Mo在富含Cl-海洋大气环境(万宁和永兴)和富含SO2工业大气环境(江津)下腐蚀最严重。样品在江津暴露1年的腐蚀产物为α-FeOOH、γ-FeOOH以及Fe3O4,在永兴暴露9个月的腐蚀产物为β-FeOOH、γ-FeOOH、Fe3O4和FeOCl。侵蚀性强Cl-和极性强SO2两种大气污染物在大气环境下加剧了FN04Mo基体腐蚀,大气暴露后的FN04Mo样品因腐蚀产物的形成、分层脱落等现象,造成其有效承载面积减小,使其力学性能发生了显著变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙有美
赵全成
李茜
王玲
佘祖新
王长朋
关键词:  FN04Mo  大气环境试验  大气腐蚀  力学性能  腐蚀机理    
Abstract: In this paper, FN04Mo was prepared by metal injection molding. The mechanical properties and corrosion mechanisms of FN04Mo under se-ven typical atmospheric conditions at Wanning Station, Mohe Station, Dunhuang Station, Lasa Station, Jiangjin Station, Xishuangbanna Station, and Yongxing Station were investigated using electro-hydraulic servo tester, X-ray diffraction analysis, scanning electron microscopy, and energy spectrum analyzer. The results showed that mechanical properties of FN04Mo at the initial stage of corrosion (1—3 months) appeared a significant decreasing trend and remained stable after 3—18 months. After 1 year exposure test in the seven typical atmospheres, the surface of FN04Mo was covered with corrosion products and the surface corrosion pattern is pitting. The SO2-rich industrial atmosphere (Jiangjin) is the most corrosive. The corrosion products of the samples exposed for 1 year in Jiangjin are α-FeOOH、γ-FeOOH and Fe3O4, while the corrosion products of the samples exposed for 9 months in Yongxing are β-FeOOH、γ-FeOOH、Fe3O4 and FeOCl. The two atmospheric pollutants, the aggressive Cl- and polar SO2, aggravated the corrosion of the FN04Mo matrix in the atmospheric environment. The formation of corrosion pro-ducts and delamination of the FN04Mo sample after atmospheric exposure reduced its effective bearing area and led to significant changes in its mechanical properties.
Key words:  FN04Mo    atmospheric environment test    atmospheric corrosion    mechanical property    corrosion mechanism
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TG172.3  
基金资助: 技术基础科研项目(JSHS2017209B001)
作者简介:  孙有美,2019年3月毕业于华北电力大学,获得工程硕士学位。于2019年4月至今就职于西南技术工程研究所,工程师,从事金属腐蚀方向。
王玲,西南技术工程研究所,正高工,兵装集团二层级学术带头人。2007年毕业于北京科技大学,硕士学位,主要从事环境试验方向,承担多个国家级项目。
引用本文:    
孙有美, 赵全成, 李茜, 王玲, 佘祖新, 王长朋. FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理[J]. 材料导报, 2021, 35(18): 18182-18189.
SUN Youmei, ZHAO Quancheng, LI Qian, WANG Ling, SHE Zuxin, WANG Changpeng. Mechanical Properties and Corrosion Mechanism of the FN04Mo on 7 Kinds of Typical Atmospheric Environment. Materials Reports, 2021, 35(18): 18182-18189.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070290  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18182
1 Cao C.Materials Reports A:Review Papers, 2020, 34(6), 11162(in Chinese).
曹琛.材料导报:综述篇, 2020,34(6),11162.
2 Li Z, Qi Q J, Ma Z H, et al.Baosteel Technology, 2015(1),77 (in Chinese).
李钊, 祁庆琚, 马朝晖,等. 宝钢技术,2015(1),77.
3 Wang C, Cao G W, Pan C,et al. Journal of Chinese Society for Corrosion and Protection, 2016,36(1),49 (in Chinese).
汪川, 曹公旺, 潘辰,等. 中国腐蚀与防护学报,2016,36(1),39.
4 Zhang L, Feng L, Wang Q.Journal of Ordnance Equipment Engineering, 2009,30(6),127 (in Chinese).
张磊, 逢磊, 王琦.四川兵工学报, 2009,30(6),127.
5 Chen S.Journal of Ordnance Equipment Engineering, 2009(7),78 (in Chinese).
陈胜.四川兵工学报, 2009(7),78.
6 Wang R.New Technology & New Process, 2008(7),68 (in Chinese).
王嵘.新技术新工艺, 2008(7),68.
7 Guo M X, Pan C, Wang Z Y,et al. Acta Metallurgica Sinica, 2018,54(1),65 (in Chinese).
郭明晓, 潘晨, 王振尧,等. 金属学报, 2018,54(1),65.
8 Liu A Q. Corrosion mechanism of carbon steel in Xisha marine atmosphere. Ph. D. Thesis, University of Science and Technology Beijing, China,2012(in Chinese).
刘安强. 碳钢在西沙海洋大气环境下的腐蚀机理. 博士学位论文, 北京科技大学,2012.
9 Zhang Y, Zhang C T. Surface Technology, 2016, 45(7), 36(in Chinese).
张誉, 张春涛.表面技术,2016,45(7),36.
10 Peng W S, Hou J, Guo W M,et al. Equipment Environmental Enginee-ring, 2019, 16(7),1(in Chinese).
彭文山, 候健, 郭为名,等. 装备环境工程, 2019, 16(7),1.
11 Zhu Y Q, Su Y, Shu C,et al. Equipment Environmental Engineering, 2018, 15(3),35(in Chinese).
朱玉琴, 苏艳, 舒畅,等.装备环境工程,2018,15(3),35.
12 Liu Y E, Lin C, Zhao Q. Journal of Chinese Society for Corrosion and Protection, 2010, 30(1), 51(in Chinese).
刘月娥,林翠,赵晴.中国腐蚀与防护学报,2010,30 (1), 51.
13 Chen H L, Wei Y. Corrosion & Protection, 2006, 27(6),284(in Chinese).
陈惠玲, 魏雨.腐蚀与防护, 2006, 27(6),284.
14 Zhang J, Chen J Z,Feng G X. Development and Application of Materials,2011,26(5),83.
张杰, 陈继志, 冯刚宪.材料的开发与应用, 2011,26(5),83.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed