Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22040208-6    https://doi.org/10.11896/cldb.22040208
  无机非金属及其复合材料 |
维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理
付晓辉1, 李冠超2, 王昱莹1, 李小燕1,*, 黄希1, 刘小亮1, 胡伟芳1
1 东华理工大学核资源与环境国家重点实验室,南昌 330013
2 广东省核工业地质局辐射环境监测中心,广州 510800
Removal Mechanism of U(Ⅵ) from Solution by VB12 Modified Nano Zero-valent Nickel
FU Xiaohui1, LI Guanchao2, WANG Yuying1, LI Xiaoyan1,*, HUANG Xi1, LIU Xiaoliang1, HU Weifang1
1 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
2 Radiation Environment Monitoring Center of Guangdong Geological Bureau of Nuclear Industry, Guangzhou 510800, China
下载:  全 文 ( PDF ) ( 9200KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用液相还原法制备了维生素B12改性的纳米零价镍(VB12@nZVNi),运用SEM-EDS、Zeta、XPS对材料进行表征,研究其形貌特征,并对VB12@nZVNi去除U(Ⅵ)的机理进行等温吸附、动力学与热力学研究。动力学研究结果表明,VB12@nZVNi对U(Ⅵ)的去除包括吸附和还原两种方式,其吸附过程很好地符合准二级吸附动力学模型和Langmuir等温吸附模型,理论最大吸附容量高达670.6 mg/g。热力学研究结果表明,该反应是自发进行的吸热反应,吸附过程是物理吸附与化学吸附并存,为表面单层吸附且离子间没有相互作用。还原反应符合准一级还原动力学模型,维生素B12中的Co可促进Ni0对U(Ⅵ)的还原。VB12@nZVNi材料的合成方法简便、环境友好、去除效果好,在含U(Ⅵ)废水处理中具有较好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付晓辉
李冠超
王昱莹
李小燕
黄希
刘小亮
胡伟芳
关键词:  纳米零价镍  维生素B12    机理    
Abstract: Vitamin B12-modified nano zero-valent nickel (VB12@nZVNi) was prepared by liquid phase reduction method. The morphology of VB12@nZVNi was characterized by SEM-EDS, Zeta, and XPS. The removal mechanism of U(Ⅵ) by VB12@nZVNi was studied with isotherm adsorption, kinetic fitting and thermodynamics. The kinetic study results showed that the removal of U(Ⅵ) by VB12@nZVNi included adsorption and reduction, the adsorption process was in good agreement with the pseudo-second-order adsorption kinetic model and the Langmuir isotherm adsorption model, and the theoretical maximum adsorption capacity reached 670.6 mg/g. The results of thermodynamic study showed that the reaction was a spontaneous endothermic reaction, and the adsorption process was a coexistence of physical adsorption and chemical adsorption, which was a single-layer adsorption on the surface and there was no interaction between ions. The reduction reaction conformed to the pseudo-first-order reduction kinetics model and Co in vitamin B12 could promote the reduction of U(Ⅵ) by Ni0. VB12@nZVNi has good application prospects in the treatment of U(Ⅵ)-containing wastewater due to its facile synthesis, environmental friendliness and good removal effect.
Key words:  nano-zero-valent nickel    vitamin B12    U(Ⅵ)    mechanism
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  X591  
基金资助: 国家自然科学基金(11465002;41760190)
通讯作者:  *李小燕,东华理工大学核科学与工程学院教授,博士研究生导师。2001年毕业于华东地质学院环境工程专业,获学士学位;2007年毕业于东华理工大学环境工程专业,获硕士学位;2013年毕业于中国原子能科学研究院辐射防护及环境保护专业,获博士学位。研究方向为功能材料合成及放射性核素分离和光催化,先后主持国家自然科学基金项目3项,江西省自然科学基金重点项目1项,江西省教改重点项目1项,参与国家级科研项目5项,发表学术论文50余篇,出版学术专著1部。372040739@qq.com   
作者简介:  付晓辉,2020年6月于三峡大学获得工学学士学位。现为东华理工大学核科学与工程学院硕士研究生,在李小燕教授的指导下进行研究。目前主要研究领域为辐射防护及环境保护。
引用本文:    
付晓辉, 李冠超, 王昱莹, 李小燕, 黄希, 刘小亮, 胡伟芳. 维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理[J]. 材料导报, 2024, 38(4): 22040208-6.
FU Xiaohui, LI Guanchao, WANG Yuying, LI Xiaoyan, HUANG Xi, LIU Xiaoliang, HU Weifang. Removal Mechanism of U(Ⅵ) from Solution by VB12 Modified Nano Zero-valent Nickel. Materials Reports, 2024, 38(4): 22040208-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040208  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22040208
1 Nathaniel S P, Alam M, Murshed M, et al. Environmental Science and Pollution Research, 2021, 28(35), 47957.
2 Li B, Haneklaus N. Energy Reports, 2022, 8, 1090.
3 Coyte R M, Jain R C, Srivastava S K, et al. Environmental Science & Technology Letters, 2018, 5(6), 341.
4 Zhang L, Li X, Wang G, et al. American Mineralogist, 2020, 105(10), 1556.
5 Bjørklund G, Christophersen O A, Chirumbolo S, et al. Environmental Research, 2017, 156, 526.
6 Dinis M D L, Fiúza A. Geosciences, 2021, 11(6), 250.
7 Tarekegn M M, Hiruy A M, Dekebo A H J R A. RSC Advances, 2021, 11(30), 18539.
8 Xu H, Gao M, Hu X, et al. Journal of Hazardous Materials, 416, 125924.
9 Ileri B, Dogu I. Journal of Environmental Management, 2022, 303, 114200.
10 Wang Y, Li G C, Li X Y, et al. Nonferrous Metal(Extractive Metallurgy), 2021(6), 115(in Chinese).
王杨, 李冠超, 李小燕, 等. 有色金属(冶炼部分), 2021(6), 115.
11 Suazo-Hernández J, Manquián-Cerda K, De La Luz Mora M, et al. Journal of Hazardous Materials, 2021, 403, 123639.
12 Chen Y, Sang W, Chen R, et al. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(1), 367.
13 Negroni A, Zanaroli G, Vignola M, et al. Environmental Engineering & Management Journal, 2012, 11(10), 1733.
14 Wang Y, Gong Y, Lin N, et al. Journal of Colloid and Interface Science, 2022, 347, 118355.
15 Sang L, Wang G, Liu L, et al. Chemosphere, 2021, 276, 130139.
16 Fu X H, Wang Y Y, He D W, et al. Nonferrous Metal(Extractive Metallurgy), 2021(10), 90(in Chinese).
付晓辉, 王昱莹, 何登武, 等. 有色金属(冶炼部分), 2021(10), 90.
17 Fan G, Xu W, Li J, et al. Advanced Materials, 2021, 33(42), 2101126.
18 Liu X, Ni K, Niu C, et al. ACS Catalysis, 2019, 9(3), 2275.
19 Shi H, Zha Q, Ni Y. Journal of Alloys and Compounds, 2022, 904, 164052.
20 Peng L, Shang Y, Gao B, et al. Applied Catalysis B, Environmental, 2021, 282, 119484.
21 Wei Z, Wang J, Mao S, et al. Acs Catalysis, 2015, 5(8), 4783.
22 Liu R, Wang H, Han L, et al. Environmental Science and Pollution Research, 2021, 28(39), 55176
23 Qiu M, Liu Z, Wang S, et al. Environmental Research, 2021, 196, 110349.
24 Zhang Q, Wang Y, Wang Z, et al. Journal of Alloys and Compounds, 2021, 852, 156993.
[1] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用空心微球制备超轻泡沫玻璃及其性能研究[J]. 材料导报, 2024, 38(4): 22090062-5.
[2] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[3] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[4] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[5] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[6] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[7] 张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
[8] 孔令云, 席晗. 道路沥青紫外老化及抗老化材料研究综述[J]. 材料导报, 2024, 38(1): 22060166-13.
[9] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[10] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[11] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[12] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[13] 黄洪涛, 刘阳,王旺. 反应堆结构部件表面阻氢/氘/氚涂层的研究现状及展望[J]. 材料导报, 2023, 37(7): 21050015-7.
[14] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[15] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed