Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19036-19040    https://doi.org/10.11896/cldb.20070027
  无机非金属及其复合材料 |
氮化铀(UN)粉末合成工艺分析
孙永菊1,2, 陈建伟1, 梅华平1, 刘静1, 李桃生1, 吴庆生1
1 中国科学院合肥物质科学研究院核能安全技术研究所,中子输运理论与辐射安全重点实验室,合肥 230031
2 中国科学技术大学,合肥 230027
Analysis of the Synthesis Process for Uranium Nitride Powder
SUN Yongju1,2, CHEN Jianwei1, MEI Huaping1, LIU Jing1, LI Taosheng1, WU Qingsheng1
1 Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2 University of Science and Technology of China, Hefei 230027, China
下载:  全 文 ( PDF ) ( 2352KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮化铀(UN)核燃料具有铀原子密度高、熔点高、导热性好、耐辐照、良好的液态金属相容性等特点,被认为是小型模块化反应堆及事故容错燃料的重要候选燃料。相对氧化铀核燃料,氮化铀燃料合成工艺复杂,制造及保存难度高,并且其性能随着合成工艺不同而有所差异,进而影响其在反应堆的服役性能。本文主要介绍了碳热还原氮化路线、金属氮化路线、铀氟铵化合物氮化路线、溶胶-凝胶法4种氮化铀合成工艺,并对各方法的原理、研究现状、优缺点等进行了分析,以期为氮化铀合成工艺发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙永菊
陈建伟
梅华平
刘静
李桃生
吴庆生
关键词:  氮化铀  核燃料  小型模块化反应堆  事故容错燃料  合成工艺    
Abstract: With the characteristics of high density of uranium atoms, good thermal conductivity, radiation resistance and good compatibility with liquid metal coolants, uranium nitride (UN, Uranium mono-nitride) has been chosen as a candidate for small modular reactor and the accident-tolerant fuel. The performance of UN fuel varies with the synthesis process, which in turn affects its performance in reactors. Compared with oxide nuclear fuel, the synthesis of uranium nitride fuel is complicated and the chemical property is lively, that's why it is so difficult to manufacture and preserve. In this paper, the principles, research status, advantages and disadvantages of 4 uranium nitride synthesis processes such as carbothermal reduction nitridation, metal nitridation, uranium fluoride ammonium nitridation and sol-gel chemistry are summarized and analyzed to propose the development trend of UN synthesis processes.
Key words:  suranium nitride    nuclear fuel    small modular reactor    accident-tolerant fuel    synthesis process
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TB321  
基金资助: 国家重点研发计划项目(2018YFB1900601);中国科学院战略性先导科技专项(XDA22010504);中国科学院重点部署项目(ZDRW-KT-2019-1-0202)
通讯作者:  jianwei.chen@fds.org.cn   
作者简介:  孙永菊,博士研究生,化学工艺工程师。2012年于天津大学获得硕士学位。取得马鞍山科技进步三等奖并先后参与“创新创业大赛”及“创响中国”且分别取得一等奖。作为主起草人参与一项行业标准的起草及答辩评审工作。在国内外相关专业领域期刊上发表学术论文4篇;申请和授权专利3项。
陈建伟,博士,副研究员,2006年6月于山东大学获工学学士学位;2012年6月于重庆大学获得工学博士学位。2012年6月进入中国科学院核能安全技术研究所工作。主要从事铅基快堆燃料组件关键原材料研发、包壳管服役性能评估和微观结构分析等相关研究工作。负责和参与中国科学院战略性先导科技专项子课题、国家自然科学基金等10余项课题。在国内外相关专业领域期刊上发表学术论文20余篇;申请和授权专利10余项。
引用本文:    
孙永菊, 陈建伟, 梅华平, 刘静, 李桃生, 吴庆生. 氮化铀(UN)粉末合成工艺分析[J]. 材料导报, 2021, 35(19): 19036-19040.
SUN Yongju, CHEN Jianwei, MEI Huaping, LIU Jing, LI Taosheng, WU Qingsheng. Analysis of the Synthesis Process for Uranium Nitride Powder. Materials Reports, 2021, 35(19): 19036-19040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070027  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19036
1 Ranken W A, Cronenberg A W.In:Symposia on Space Nuclear Power Systems. Albuquerque, 1984.
2 Streit M, Ingold F. Journal of the European Ceramic Society, 2005, 25(12), 2687.
3 Burkes D E, Fielding R S, Porter D L, et al. Journal of Nuclear Mate-rials, 2009, 393, 1.
4 Choi J, Ebbinghaus B, Meiers T, et al. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2006.
5 Qu Z H, Yin B Y, Ren J R, et al. Journal of Nuclear Materials, 2017, 496, 193.
6 Streit M. Fabrication and characterisation of (Pu, Zr)N fuels. Ph.D. Thesis. Paul Scherrer Institute, Switzerland, 2004.
7 Wang X F, Hu Y, Pan Q F, et al. Progress in Chemistry, 2018, 30(12), 1803(in Chinese).
王晓方, 胡殷, 潘启发,等.化学进展, 2018, 30(12), 1803.
8 Muromura T, Tagawa H. Journal of nuclear materials,1979,80(2),330.
9 Yi W, Dai S P, Shen B L, et al. Nuclear Power Engineering, 2007, 28(5), 46(in Chinese).
易伟, 代胜平, 沈保罗, 等.核动力工程, 2007, 5(28), 46.
10 Grachev A F, Zherebtsov A A, Zabud'ko L M, et al. Atomic Energy, 2018, 125(5), 314.
11 Tadasumi M, Hiroaki T. Journal of the American Ceramic Society, 1978, 61(1-2), 30.
12 Li G X, Wu S. Nuclear fuel, Chemical Industry Press, China, 2007(in Chinese).
李冠兴, 武胜.核燃料, 化学工业出版社, 2007.
13 Tennery V J, Godfrey T G, Potter R. Journal of the American Ceramic Society, 1971, 54(7), 327.
14 Hollmer T. Manufacturing methods for (U-Zr)N-fuels. B.S.Thesis, KTH Royal Institute of Technology, Sweden, 2011.
15 Yin B Y, Qu Z H. Atomic Energy Science and Technology, 2014, 48(10), 1850(in Chinese).
尹邦跃, 屈哲昊.原子能科学技术, 2014, 48(10), 1850.
16 Katsura M. Journal of Alloys and Compounds, 1992, 182(1), 91.
17 Katsura M, Serizawa H. Journal of Alloys and Compounds, 1992, 187(2), 389.
18 Serizawa H, Fukuda K, Katsura M. Journal of Alloys and Compounds, 1995, 223(1), 39.
19 Katsura M, Nishimaki K, Nakagawa T, et al. Journal of Alloys and Compounds, 1998, 271-273, 662.
20 梅华平.一种高活性氮化铀粉末制造工艺.中国, CN106744734A. 2017.
21 Youinou G J, Sen R S. Nuclear Technology, 2014, 188(2), 123.
22 Jaques B J, Marx B M, Hamdy A S, et al. Journal of Nuclear Materials, 2008, 381, 309.
23 Bugl J, Bauer A A. Journal of the American Ceramic Society, 2006, 47(9), 425.
24 Yeamans C B. Dry process fluorination of uranium dioxide using ammo-nium bifluoride. B.S.Thesis, University of California, Berkeley, USA, 2003.
25 Yeamans C B, Chinthaka Silva G W, Cerefice G S, et al. Journal of Nuclear Materials, 2008, 374(1-2), 75.
26 Wani B N, Patwe S J, Rao U R K. Journal of Fluorine Chemistry, 1989, 44(2), 177.
27 Giordano C, Antonietti M. Nano Today, 2011, 6(4), 366.
28 Hunt R D, Lindemer T B, Hu M Z, et al. Radiochimica Acta, 2007, 95(4), 225.
29 Hunt R D, Silva C M, Lindemer T B, et al. Journal of Nuclear Mate-rials, 2014, 448(1-3), 399.
30 Shoup R D. Journal of the American Ceramic Society, 1977, 60(7-8), 332.
31 Ledergerber G, Kopajtic Z, Ingold F, et al. Journal of Nuclear Mate-rials, 1992, 188, 28.
32 Ganguly C, Hegde P V, Sengupta A K. Journal of Nuclear Materials, 1991, 178(2-3), 234.
33 Ganguly C. Transactions of the Indian Ceramic Society, 2014, 47(6), 161.
[1] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[2] 程亮, 张鹏程. 事故容错热导率增强型UO2核燃料的研究进展[J]. 材料导报, 2019, 33(11): 1787-1792.
[3] 程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166.
[4] 刘俊凯, 张新虎, 恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 《材料导报》期刊社, 2018, 32(11): 1757-1778.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed