Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1787-1792    https://doi.org/10.11896/cldb.18050107
  核材料 |
事故容错热导率增强型UO2核燃料的研究进展
程亮, 张鹏程
中国工程物理研究院材料研究所,绵阳 621907
Research Progress on Enhanced Thermal Conductivity Uranium Dioxide for Accident Tolerant Fuel
CHENG Liang, ZHANG
Pengcheng Institute of Materials, China Academy of Engineering Physics, Mianyang 621907
下载:  全 文 ( PDF ) ( 2662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 UO2+Zr合金燃料元件为当前轻水核反应堆应用最广泛的核燃料体系。然而,福岛“311”核事故的突发揭露了UO2+Zr合金燃料体系在事故状态下的重大安全隐患,研发事故容错核燃料计划被提上议程。事故容错燃料是为提高核燃料元件抵抗严重事故能力而开发的新一代燃料系统。对现有核燃料形式进行设计改进,即在UO2基体中添加一定量高热导第二相,开发热导率增强型UO2核燃料,此方法对工业体系的改动小,为近期事故容错核燃料的主要研究方向。现阶段,在热导率增强型UO2核燃料开发历程中,已取得应用性研究进展的候选体系主要为UO2-SiC、UO2-BeO、UO2-金刚石以及UO2-Mo。其中,在UO2-SiC和UO2-金刚石体系中,对SiC以及金刚石与UO2的界面反应认识还不足,在堆内辐照条件下SiC和金刚石性质的演变对UO2热物理性能的作用规律尚未明晰。电场辅助快速烧结技术是抑制界面反应、制备UO2-SiC和UO2-金刚石的有效途径。在UO2-BeO体系中,前期大量实验研究和堆内模拟表明BeO与UO2具有优异的化学相容性以及良好的增强效果,UO2-BeO被视为具备工业应用前景的燃料体系,然而,铍材料作为战略资源的稀缺性和BeO的剧毒性以及对乏燃料后处理流程的变革是工业化应考量的。在UO2-Mo体系中,Mo作为金属中最具潜力的添加材料,呈现三维网状分布,展现出优异的热导率增强作用,这种微结构还兼具持留裂变产物的优势;与其他几种添加材料相比,Mo的中子吸收截面较高,添加量应合理调控,相应的基础研究需持续跟进。目前,上述候选燃料体系尚缺乏堆内辐照考核数据。可将高通量制备、机器学习等引入UO2系核燃料的研制中,以加快热导率增强型UO2的工业化应用进程。本文归纳了添加第二相的热导率增强型UO2核燃料的研究进展,分别对制备方法、微观结构、导热性能等进行介绍,分析了热导率增强型UO2面临的问题并展望了其应用前景,以期为研发轻水堆用事故容错燃料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程亮
张鹏程
关键词:  轻水堆  事故容错核燃料  二氧化铀  第二相    
Abstract: The UO2+Zr alloy fuel assembly is the most widely used nuclear fuel system for the current light water nuclear reactor. However, the Fukushima Daiichi nuclear disaster revealed the primary safety risks of UO2+Zr alloy fuel system under accident, thereby various international programs have been launched to develop accident tolerant fuel (ATF). ATF is a new generation of fuel system developed to enhance the ability of nuclear fuel assembly under severe accident. The primary domain research of accident tolerant fuel is to design and improve current nuclear fuel forms and develop enhanced thermal conductivity UO2 nuclear fuel on the basis of little change in industry. At present, the candidate fuel systems for thermal conductivity enhanced UO2 that have achieved progress are the UO2-SiC, UO2-BeO, UO2-diamond and UO2-Mo. For the UO2-SiC and UO2-diamond systems, the details of the interfacial reactions between SiC/diamond and UO2 have been poorly understood. The role of the evolution of properties for SiC and diamond on the thermos-physical performance of UO2 under irradiation has yet to be fully defined. Nevertheless, electric field assisted sintering (FAST) technology is an effective method to suppress the interfacial reaction and fabricate UO2-SiC and UO2-diamond. In the UO2-BeO system, the excellent chemical compatibility between BeO and UO2, and the enhancement effect for thermal conductivity of UO2 has been demonstrated through the extensive work. Accordingly, UO2-BeO is regarded as the candidate fuel system for industrial application. However, the Be presenting as the scarcity material for the strategic resource, and the toxic nature of BeO as well as the transformation of spent fuel reprocessing processes, should be considered for industrialization. In the UO2-Mo system, Mo has been considered as the most potential additive among the metals, and indicates outstanding thermal conductivity enhancement for the three-dimensional network distribution. Moreover, such microstructure is beneficial for retaining fission products. Compared with other additives, Mo has the property of higher neutron absorption cross section, and thus the amount of addition should be reasonably regulated. While such fuel system also should be investigated in detail. It is well accepted that the candidate fuel system above is still lacks of irradiation data for assessments. High-throughput preparation and machine learning could be introduced into the development of thermal conductivity enhanced UO2 to accomplish the industrial application at an earlier time. This review offers a retrospection of the research efforts with respect to the thermal conductivity enhanced UO2, and provides the fabrication process, microstructure and thermal conductivity respectively. Then the current problems confronting the thermal conductivity enhanced UO2 are concerned as well as the application prospects are presented to the benefit for ATF in light water reactor.
Key words:  light water reactor    accident tolerant fuel    uranium dioxide    second phase
                    发布日期:  2019-05-21
ZTFLH:  TB321  
基金资助: 国家重点研发计划重点专项资助项目(2017YFB0702400)
通讯作者:  zpc113@sohu.com   
作者简介:  程亮,2012年毕业于中南大学,获工学硕士学位。2012—2016年在中国工程物理研究院工作,现为中国工程物理研究院研究生院核燃料循环与材料专业博士研究生,在张鹏程研究员的指导下开展研究工作。目前研究领域为事故容错核燃料及相关材料研究。张鹏程,工学博士,研究员,核燃料循环与材料专业博士研究生导师,四川省有突出贡献优秀专家,国务院政府津贴获得者。先后负责国家重点研发计划、863计划、ITER计划、国家自然科学基金重点项目、国家重大仪器开发专项等十余项课题,公开发表论文60余篇,获省部级和军队科技进步奖一、二等奖十余项。长期从事核燃料材料、核结构材料、特种陶瓷等相关领域的研究。
引用本文:    
程亮, 张鹏程. 事故容错热导率增强型UO2核燃料的研究进展[J]. 材料导报, 2019, 33(11): 1787-1792.
CHENG Liang, ZHANG. Research Progress on Enhanced Thermal Conductivity Uranium Dioxide for Accident Tolerant Fuel. Materials Reports, 2019, 33(11): 1787-1792.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050107  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1787
1 Li G X, Wu S. Nuclear fuel, Chemical Industry Press, China,2007(in Chinese).
李冠兴,武胜.核燃料,化学工业出版社,2007.
2 Fink J K. Journal of Nuclear Materials,2000,279(1),1.
3 Zinkle S J, Terrani K A, Gehin J C, et al. Journal of Nuclear Materials,2014,448(1-3),374.
4 Li B Q, Yang Z L, Jia J P, et al. Ceramics International,2018,44(9),10069.
5 Li B Q, Yang Z L, Jia J P, et al. Scripta Materialia,2018,142,70.
6 Chen Z C, Subhash G, Tulenko J S. Nuclear Engineering and Design,2015,294,52.
7 Kim D J, Kim K S, Kim D S, et al. Nuclear Engineering and Technology,2018,50(2),1.
8 Hyland G J. Journal of Nuclear Materials,1983,113(2-3),125.
9 Harding J H, Matin D G. Journal of Nuclear Materials,1989,166(3),223.
10 Yin Q, Savrasov S Y. Physical Review Letters,2008,100(22),225504(1).
11 Desgranges L, Ma Y, Garcia P, et al. Inorganic Chemistry,2017,56(1),321.
12 Gofryk K, Du S, Stanek C R, et al. Nature Communications,2014,5,4551.
13 Stehlea H, Assmanna H, Wunderlicha F. Nuclear Engineering and Design,1975,33(2),230.
14 Ge L, Subhash G, Baney R H, et al. Journal of the European Ceramic Society,2014,34(7),1791.
15 Yeo S, Mckenna E, Baney R, et al. Journal of Nuclear Materials,2013,433(1-3),66.
16 Yeo S, Baney R, Subhash G, et al. Journal of Nuclear Materials,2013,442(1-3),245.
17 Liu R, Zhou W, Prudil A, et al. Applied Thermal Engineering,2016,107,86.
18 Zhou W, Zhou W Z. Metals,2018,8(1),65.
19 Chandramouli D, Revankar S T. International Journal of Energy Research, DOI: 10.1155/2014/751070.
20 Zhou W Z, Liu R, Revankar S T. Annals of Nuclear Energy,2015,81,240.
21 Revankar S T, Zhou W Z, Chandramouli D. International Journal of Engineering Science,2015,5(1),1.
22 Liu R, Zhou W Z. Annals of Nuclear Energy,2017,109,298.
23 Chen Z C, Subhash G, Tulenko J S. Journal of Nuclear Materials,2016,475(16),1.
24 Kim S H, Joung C Y, Kim H S, et al. Journal of Nuclear Materials,2006,352(1-3),151.
25 Kim D J, Rhee Y W, Kim J H, et al. Journal of Nuclear Materials,2015,462,289.
26 Lee H S, Kim D J, Kim S W, et al. Journal of Nuclear Materials,2016,477,88.
27 Kim H G, Yang J H, Kim W J, et al. Nuclear Engineering and Technology,2016,48(1),1.
28 Lee Y H, No H C, Lee J I. Nuclear Engineering and Design,2017,31,213.
29 Kim D J, Lee H J, Jang C H, et al. Journal of Nuclear Materials,2017,492(1),6.
30 Charpentier L, Dawi K, Balat-pichelin M, et al. Corrosion Science,2012,59(3),127.
31 Braun J, Gueneau C, Alpettaz T, et al. Journal of Nuclear Materials,2017,487(1),380.
32 Matsumiya H, Yoshioka K, Kikuchi T, et al. Progress in Nuclear Energy,2015,82(1),16.
33 Cheng L, Zhang P C. Materials Review A:Review Papers,2018,32(7),34(in Chinese).
程亮,张鹏程.材料导报:综述篇,2018,32(7),34.
34 Tulenko J S, Baney R H. An innovative high thermal conductivity fuel design, Department of Energy Reports,2007.
35 Chauhan V S, Riyad M F, Du X P, et al. Metallurgical and Materials Transactions E,2017,4(2),61.
36 Nishigaki S, Maekawa K. Journal of Nuclear Materials,1964,14,453.
37 Ishimoto S, Hirai M, Ito K, et al. Journal of Nuclear Science and Technology,1996,33(2),134.
38 Sarma K H, Fourcade J, Lee S G, et al. Journal of Nuclear Materials,2006,352(1-3),324.
39 Garcia C B, Brito R A, Ortega L H, et al. Metallurgical and Materials Transactions E,2017,4(2-4),70.
40 Mccoy K, Mays C. Journal of Nuclear Materials,2008,375(2),157.
41 Hickman B S, Pryor A W. Journal of Nuclear Materials,1964,14(64),96.
42 Slack G A. Journal of Applied Physics,1964,35(12),3460.
43 Thumm M. Diamond and Related Materials,2001,10(9),1692.
44 Negre J P, Rubbelynck C. Nuclear Instruments and Methods in Physics Research Section A-Accelerators,2000,451(3),638.
45 Abyzov A M, Shakhov F M, Averkin A I, et al. Materials and Design,2015,87,527.
46 Ma S D, Zhao N Q, Shi C S, et al. Applied Surface Science,2017,402,372.
47 Liang X, Jia C, Chu K, et al. Journal of Composite Materials,2012,46(9),1127.
48 Ahn J, Tan F H, Tan H S. Journal of Materials Science Letters,1993,12(10),775.
49 Bundy F P, Bassett W A, Weathers M S, et al. Carbon,1996,34(2),141.
50 Qian J, Pantea C, Huang J, et al. Carbon,2004,42(12),2691.
51 Gosse S, Gueneau C, Alpettaz T, et al. Nuclear Engineering and Design,2008,238(11),2866.
52 Zaiser M, Lyutovich Y, Banhart F. Physical Review B,2000,62(5),3058.
53 Lyutovich Y, Banhart F. Applied Physics Letters,1999,74(5),659.
54 Zaiser M, Banhart F. Applied Physics Letters,1997,79(19),3680.
55 Cheng B, Chou P, Kim Y J. Journal of Nuclear Science and Technology,2016,2(5),1.
56 Cheng B, Kim Y J, Chou P. Journal of Nuclear Science and Technology,2016,48(1),16.
57 Nelson A T, Sooby E S, Kim Y J, et al. Journal of Nuclear Materials,2014,448(1-3),441.
58 Byun T S, Li M, Cockeram B V, et al. Journal of Nuclear Materials,2008,376(2),240.
[1] 薛克敏, 薄冬青, 王薄笑天, 刘梅, 李萍. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报, 2018, 32(18): 3195-3198.
[2] 程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166.
[3] 何培, 姚伟志, 吕建明, 高博, 李先容. ODS钢的抗辐照设计及纳米第二相粒子表征的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 34-40.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed