Please wait a minute...
材料导报  2018, Vol. 32 Issue (13): 2161-2166    https://doi.org/10.11896/j.issn.1005-023X.2018.13.004
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展
程亮, 张鹏程
中国工程物理研究院材料研究所,绵阳 621907
SiCf/SiC Composites and Molybdenum Alloys: the Promising Candidate Materialsfor Typical Accident Tolerant Fuel Cladding of Light Water Reactors
CHENG Liang, ZHANG Pengcheng
Institute of Materials, China Academy of Engineering Physics, Mianyang 621907
下载:  全 文 ( PDF ) ( 1447KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 轻水堆是当前核电站应用最为广泛的堆型,其包壳材料均为锆合金。然而,福岛严重核事故的突发,使锆合金包壳的安全性受到质疑,事故容错燃料及其包壳候选材料被提上研究议程。本文综述了轻水堆用SiCf/SiC复合材料和Mo合金包壳候选材料的研究进展,以及它们在轻水堆工况下的性能评估,指出实际工程应用所面临的挑战。最后展望了SiCf/SiC复合材料和Mo合金在核燃料包壳中的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程亮
张鹏程
关键词:  轻水堆  包壳材料  事故容错燃料  SiCf/SiC  钼合金    
Abstract: Light water reactor (LWR) is the most widespreadly used type of nuclear power reactor, all of which are equipped with fuel claddings made of zirconium alloy. However, the Fukushima Daiichi accident has called into question the reliability of the in-service Zr alloy claddings, and thereby various international programs have been launched to develop accident tolerant fuel (ATF) and relevant candidate cladding materials. This paper summarizes the recent research progress of SiCf/SiC composites and Mo alloys cladding materials, along with the performance assessment with respect to LWR working conditions. In addition, the potential challenges for engineering practices and the future prospects are also discussed.
Key words:  light water reactor    cladding materials    accident tolerant fuel    SiCf/SiC    Mo alloy
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TB383  
基金资助: 国家重点研发计划重点专项资助项目(2017YFB0702400)
通讯作者:  张鹏程:通信作者,男,1964年生,博士,研究员,博士研究生导师,主要从事核燃料及相关材料研究 E-mail:13981102769@163.com   
作者简介:  程亮:男,1986年生,博士研究生,工程师,主要从事事故容错燃料及包壳材料研究 E-mail:mcchengliang@126.com
引用本文:    
程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166.
CHENG Liang, ZHANG Pengcheng. SiCf/SiC Composites and Molybdenum Alloys: the Promising Candidate Materialsfor Typical Accident Tolerant Fuel Cladding of Light Water Reactors. Materials Reports, 2018, 32(13): 2161-2166.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.004  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2161
1 Wray P. Materials for nuclear energy in the post-Fukushima era: An interview with John Marra[J].American Ceramic Society Bulletin,2012,90:24.
2 Zinkle S J,Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective[J].Journal of Nuclear Materials,2014,448(1-3):374.
3 Yueh K, Carpene D, Feinroth H. Clad in clay[J].Nuclear Enginee-ring International,2010,55(666):14.
4 Terrani K A, Zinkle S J, Snead L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J].Journal of Nuclear Materials,2014,448(1-3):420.
5 George N M, Terrani K A, Powers J J. Neutronic analysis of candidate accident-tolerant iron alloy cladding concepts[R].Tennessee: Oak Ridge National Laboratory,2013.
6 Pint B A, Terrani K A, Yamamoto Y, et al. Material selection for accident tolerant fuel cladding[J].Metallurgical and Materials Tran-sactions E,2015,2(3):190.
7 Younker I, Fratoni M. Neutronic evaluation of coating and cladding materials for accident tolerant fuels[J].Progress in Nuclear Energy,2016,88(1):10.
8 Deck C P, Jacobsen G M, Sheeder J, et al. Characterization of SiC-SiC composites for accident tolerant fuel cladding[J].Journal of Nuclear Materials,2015,466(1):667.
9 Katoh Y, Terrani K A. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015[R].Tennessee: Oka Ridge National Laboratory,2015.
10 Cheng B, Chou P, Kim Y J. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance[J].Nuclear Sciences and Technologies,2016,2(5):1.
11 Cheng B, Kim Y J, Chou P. Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding[J].Nuclear Engineering and Technology,2016,48(1):16.
12 Nelson A T, Sooby E S, Kim Y J, et al. High temperature oxidation of molybdenum in water vapor environments[J].Journal of Nuclear Materials,2014,448(1-3):441.
13 Duan Z G, Yang H L, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water reactors[J].Nuclear Engineering and Design,2017,316:131.
14 Kese K, Olsson P A T, Holston A M, et al. High temperature nanoindentation hardness and Young’s modulus measurement in a neutron-irradiated fuel cladding material[J].Journal of Nuclear Materials,2017,487(1):113.
15 Kim H G, Yang J H, Kim W J, et al. Development status of accident tolerant fuel for light water reactors in Korea[J].Nuclear Engineering and Technology,2016,48(1):1.
16 Ott L J, Robb K R, Wang D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J].Journal of Nuclear Mate-rials,2014,448(1-3):520.
17 Brown N R, Wysocki A, Terrani K, et al. The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors[J].Annals of Nuclear Energy,2017,99(1):353.
18 Johnson K, Strom V, Wallenius J, et al. Oxidation of accident tole-rant fuel candidates[J].Journal of Nuclear Science and Technology,2017,54(3):280.
19 Lee Y H, Byun T S. A comparative study on the wear behaviors of cladding candidates for accident-tolerant fuel[J].Journal of Nuclear Materials,2015,465(1):857.
20 Sitten S B. Application of MELCOR to ATF concepts for sever accident analysis[R].San Antonio: GE Global Research Center,2014.
21 Katoh Y, Terrani K, Snead L L. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures[C]∥Conference Record of the Accident Tolerant Fuel Concepts For Light Water Reactors. Tennessee,2014:277.
22 Silva C M, Katoh Y, Voit S,et al. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures[J].Journal of Nuclear Materials,2015,460:52.
23 Rohmer E, Martin E, Lorrette C. Mechanical properties of SiC/SiC braided tubes for fuel cladding[J].Journal of Nuclear Materials,2014,453(1-3):16.
24 Jacobson N, Harder B, Myers D. Oxidation transitions for SiC Part Ⅰ. Active-to-passive transitions[J].Journal of the American Ceramic Society,2013,96(3):838.
25 Harder B, Jacobson N, Myers D. Oxidation transitions for SiC Part Ⅱ. Passive-to-active transitions[J].Journal of the American Ceramic Society,2013,96(2):606.
26 Lee Y H, No H C, Lee J I. Design optimization of multi-layer silicon carbide cladding for light water reactors[J].Nuclear Engineering and Design,2017,311:213.
27 Kim D, Lee H J, Jang C H, et al. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes[J].Journal of Nuclear Materials,2017,492(1):6.
28 Charpentier L, Dawi K, Balat-Pichelin M, et al. Chemical degradation of SiC/SiC composite for the cladding of gas-cooled fast reactor in case of severe accident scenarios[J].Corrosion Science,2012,59(3):127.
29 Braun J, Gueneau C, Alpettaz T, et al. Chemical compatibility between UO2 fuel and SiC cladding for LWRs application to ATF (accident-tolerant fuels)[J].Journal of Nuclear Materials,2017,487(1):380.
30 Matsumiya H, Yoshioka K, Kikuchi T, et al. Reactivity measurements of SiC for accident-tolerant fuel[J].Progress in Nuclear Energy,2015,82(1):16.
31 Yueh K, Terrani K A. Silicon carbide composite for light water reactor fuel assembly applications[J].Journal of Nuclear Materials,2014,448(1-3):380.
32 Kim W J, Kim D, Park J Y. Fabrication and material issues for the application of SiC composites to LWR fuel cladding[J].Nuclear Engineering and Technology,2013,45(4):565.
33 Koyanagi T, Katoh Y, Terrani K A, et al. Hydrothermal corrosion of silicon carbide joints without radiation[J].Journal of Nuclear Materials,2016,481(1):226.
34 Gamble K A, Barani T, Pizzocri D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J].Journal of Nuclear Materials,2017,491(1):55.
35 Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J].Annals of Nuclear Energy,2015,85(1):763.
36 Guria A, Charit I. Tensile properties of accident-tolerant aluminum-bearing ferritic steels[J].Annals of Nuclear Energy,2017,100(P1):82.
37 Yano Y, Tanno T, Oka H, et al. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions[J].Journal of Nuclear Materials,2017,487(1):229.
38 Chun J H, Lim S W, Chung B D, et al. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs[J].Nuclear Engineering and Design,2015,289:287.
39 Wang X, Zheng M J, Szlufarska I, et al. Continuum model for hydrogen pickup in zirconium alloys of LWR fuel cladding[J].Journal of Applied Physics,2017,121(13):135101.
40 Katoh Y, Snead L L, Szlufarska I, et al. Radiation effects in SiC for nuclear structural applications[J].Current Opinion in Solid State and Materials Science,2012,16(3):143.
41 Sitton S B, Hurley D, Khafizov M, et al. Silicon carbide gap analysis and feasibility study[R].Idaho: Idaho National Laboratory,2013.
42 Stone J G, Schleicher R, Deck C P, et al. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding[J].Journal of Nuclear Materials,2015,466(1):682.
43 Stempien J D, Carpenter D M, Kohse G, et al. Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions[J].Nuclear Technology,2012,183(1):13.
44 Terrani K A, Yang Y, Kim Y J, et al. Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation[J].Journal of Nuclear Materials,2015,465(1):488.
45 Park J Y, Kim I H, Jung Y I, et al. Long-term corrosion behavior of CVD SiC in 360 ℃ water and 400 ℃ steam[J].Journal of Nuclear Materials.2013,443(1-3):603.
46 Katoh Y, Ozawa K, Shih C, et al. Continuous SiC fiber, CVI SiC matrix composites for Nuclear applications: Properties and irradiation Effects[J].Journal of Nuclear Materials,2014,448(1-3):448.
47 Belgacem M B, Richet V, Terrani K A, et al. Thermo-mechanical analysis of LWR SiC/SiC composite cladding[J].Journal of Nuclear Materials,2014,447(1-3):125.
48 El-Genk M S, Tournier J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems[J].Journal of Nuclear Materials,2005,340(1):93.
49 Cheng P M, Zhang G J, Zhang J Y, et al. Coupling effect of intergranular and intragranular particles on ductile fracture of Mo-La2O3 alloys[J].Materials Science and Engineering A,2015,640(1):320.
50 Cockeram B V. The fracture toughness and toughening mechanism of commercially available unalloyed molybdenum and oxide dispersion strengthened molybdenum with an equiaxed, large grain structure[J].Metallurgical and Materials Transaction A,2009,40(12):2843.
51 Cockeram B V, Smith R W, Hashimoto N, et al. The swelling, microstructure, and hardening of wrought LCAC, TZM, and ODS molybdenum following neutron irradiation[J].Journal of Nuclear Materials,2011,418(1-3):121.
52 Byun T S, Li M, Cockeram B V, et al. Deformation and fracture properties in neutron irradiated pure Mo and Mo alloys[J].Journal of Nuclear Materials,2008,376(2):240.
[1] 程亮, 张鹏程. 事故容错热导率增强型UO2核燃料的研究进展[J]. 材料导报, 2019, 33(11): 1787-1792.
[2] 刘俊凯, 张新虎, 恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 《材料导报》期刊社, 2018, 32(11): 1757-1778.
[3] 张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed