Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1757-1778    https://doi.org/10.11896/j.issn.1005-023X.2018.11.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
事故容错燃料包壳候选材料的研究现状及展望
刘俊凯1,张新虎1,恽迪1,2
1 西安交通大学能源与动力工程学院,西安 710049;
2 西安交通大学动力工程多相流国家重点实验室,西安 710049
A Complete Review and a Prospect on the Candidate Materials for Accident-tolerant Fuel Claddings
LIU Junkai1, ZHANG Xinhu1, YUN Di1,2
1 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049;
2 State Key Laboratory of Multi-phase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049
下载:  全 文 ( PDF ) ( 4982KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 2011年福岛核电站事故中,反应堆堆芯燃料中的锆合金包壳在事故工况下与高温水蒸汽发生剧烈氧化反应继而产生大量的氢气和热量,最终导致反应堆堆芯熔化和氢气爆炸,对社会和环境造成极大负面影响。自此之后,国内外纷纷展开对事故容错燃料的研究开发。相较于传统的UO2-Zr合金燃料体系,事故容错燃料能够在反应堆正常运行工况下维持或提高燃料性能,并在事故发生后相当长的一段时间内维持堆芯完整性,提供足够的时间裕量来采取事故应对措施。
  反应堆堆芯环境非常极端,包壳长期处于高温高压腐蚀介质中,同时还受到中子辐照的影响,因此新型包壳材料需要较好的耐腐蚀性和辐照稳定性。经不同研究者的研究评估,目前能够替代Zr合金的事故容错燃料包壳材料可分为陶瓷材料和金属材料两类:陶瓷材料主要以SiC/SiC复合材料为代表;金属材料主要有以FeCrAl为代表的Fe基合金和以Mo为代表的难熔金属及其合金。
  上述三种替代Zr包壳的材料各有其利弊,均未达到工程应用水平,并且都存在待解决的关键性问题。其中,FeCrAl合金的研发进展最快,目前在热学性能、力学性能、抗腐蚀性能、抗辐照性能等方面表现较好,但在工业加工和焊接等方面仍有待进一步改善。就SiC/SiC复合材料而言,由于SiC自身的高脆性而导致力学强度不足,不同的研究者提出了不同的结构设计思路试图降低包壳管失效概率,但包壳最终的结构设计仍未确定,而辐照引起的热导率急剧降低及连接密封和加工制造等方面还在不断研究中。Mo及Mo合金的力学性能和抗辐照性能较好,但自身抗腐蚀性较差,解决思路主要集中在提高钼纯度、调整合金的元素成分、进行表面涂层等方面。目前,对后两种材料包壳管的加工能力均未达到薄壁长管的工业制造水平。对于这几种候选包壳材料,需要建立属性数据库和一套完善的标准来衡量材料的质量。此外,还需开发相应的程序来评估包壳在堆内的行为。
  本文主要综述了SiC/SiC复合材料、FeCrAl合金、Mo及Mo合金三种候选包壳材料的研究进展,包括候选包壳材料的物理性质、耐腐蚀性能、力学性能、抗辐照性能、芯块-包壳力学与化学相互作用、在事故工况下的行为和工程应用等,综合分析了事故容错燃料包壳材料当前的研究现状,指出了各事故容错燃料包壳未来需集中解决的关键性问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘俊凯
张新虎
恽迪
关键词:  事故容错燃料(ATF)  碳化硅  铁铬铝合金  钼合金    
Abstract: In the 2011 Fukushima nuclear power plant accident, the zirconium alloy claddings in the reactor fuel were oxidized violently by high temperature water vapor generated under accident conditions, resulting in a large amount of hydrogen and heat, which eventually led to reactor core melt down and hydrogen explosion. The event delivered severe impacts on the human society and the environment. From then on, the development programs of accident-tolerant fuels (ATF) have been initiated worldwide. Compared with the traditional UO2-Zr system, ATF can sustain or improve the fuel performance at normal operating conditions, as well as maintain the core integrity for an extended time after accidents to provide temporal safety margins for the accident management.
  The environment of the reactor core is very harsh, as the claddings are exposed lastingly to high temperature and high pressure corrosion medium, and moreover, neutron irradiation. As a result, if any new materials were to qualify as cladding materials, they would need excellent radiation stability and corrosion resistance. According to the research and evaluation of different researchers, the accident-tolerant fuel cladding materials which has displayed the potential of substituting for Zr alloy can be classified into ceramic materials and metallic materials, in which the ceramic materials are mainly represented by SiC/SiC composite materials, and the metallic materials mainly include Fe-based alloy exemplified by FeCrAl and refractory metals exemplified by Mo/Mo alloy.
  Each of the three materials has its own advantages and disadvantages, and still needs improvements to attain the requirement of engineering application, and all of them have some unresolved key issues. The research and development of the FeCrAl alloy has reached the second generation model alloy. The thermophysical and mechanical properties, corrosion resistance and radiation resis-tance of FeCrAl alloy are outstanding, while the research on hydrogen permeability and industrial processing and welding are still in progress. In the case of SiC/SiC composites, the high brittleness of SiC material leads to inadequate mechanical strength. Hence researchers have proposed various structural design schemes to reduce the failure probability of cladding tubes, but the final structural design of the cladding remains undetermined. The sharp reduction of thermal conductivity of SiC/SiC composites caused by irradiation and the joining and fabrication are still under investigation. Mo and Mo alloys possesses excellent mechanical properties and radiation resistance, but exhibits poor corrosion resistance. The present countermeasures are mainly focused on improving the purity of molybdenum, adjusting the elemental composition of the alloys and adopting surface coating techniques. The processability of these three kinds of cladding tube materials has not reached the level of industrial manufacturing of thin-wall long tubes. For these candidate materials, a property database and an integrated series of standards are of great necessity to evaluate the quality of the materials. In addition, the requirement of in-core behavior assessment also necessitates the development of the corresponding fuel performance code.
  This paper summarizes the latest research progress on the candidate ATF cladding materials, including their physical properties, corrosion resistance, mechanical behaviors, radiation resistance, pellet-cladding mechanical and chemical interactions, behaviors under accident conditions and engineering applications. It also gives critical discussions about the current research situation and the potential key issues of each candidate material.
Key words:  accident-tolerant fuel (ATF)    silicon carbide    iron chromium-aluminum alloy    molybdenum alloy
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TL352  
作者简介:  刘俊凯:男,1995年生,博士研究生,主要研究方向为事故容错燃料包壳材料 E-mail:k611478@stu.xjtu.edu.cn 恽迪:男,1979年生,教授,博士研究生导师,主要从事核反应堆燃料和材料的研究 E-mail:diyun1979@xjtu.edu.cn
引用本文:    
刘俊凯, 张新虎, 恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 《材料导报》期刊社, 2018, 32(11): 1757-1778.
LIU Junkai, ZHANG Xinhu, YUN Di. A Complete Review and a Prospect on the Candidate Materials for Accident-tolerant Fuel Claddings. Materials Reports, 2018, 32(11): 1757-1778.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.001  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1757
1 Ott L J, Robb K R, Wang D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J].Journal of Nuclear Mate-rials,2014,448(1-3):520.
2 Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective[J].Journal of Nuclear Materials,2014,448(1-3):374.
3 Sowder A G. Challenges and opportunities for commercialization of enhanced accident tolerant fuel for light water reactors: A utility-informed perspective[J].IAEA TECDOC Series,119.
4 Cheng B, Chou P, Kim Y J. Development of Mo-based accident to-lerant LWR fuel cladding[J].IAEA TECDOC Series,2016:66.
5 Ejenstam J, Halvarsson M, Weidow J, et al. Oxidation studies of Fe10CrAl-RE alloys exposed to Pb at 550 ℃ for 10 000 h[J].Journal of Nuclear Materials,2013,443(1-3):161.
6 Yamamoto Y, Field K G, Snead L L. Optimization of Nuclear Grade FeCrAl fuel cladding for light water reactors[J].IAEA TECDOC Series,2016:55.
7 Yamamoto Y, Pint B A, Terrani K A, et al. Development and pro-perty evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J].Journal of Nuclear Materials,2015,467:703.
8 Terrani K A, Zinkle S J, Snead L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J].Journal of Nuclear Materials,2014,448(1-3):420.
9 George N M, Terrani K, Powers J, et al. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors[J].Annals of Nuclear Energy,2015,75:703.
10 Hu X, Terrani K A, Wirth B D, et al. Hydrogen permeation in FeCrAl alloys for LWR cladding application[J].Journal of Nuclear Materials,2015,461:282.
11 Field K G, Hu X, Littrell K, et al. Stability of Model Fe-Cr-Al alloys under the presence of neutron radiation [R].Oak Ridge National Lab. (ORNL), Oak Ridge, TN, USA,2014.
12 Field K G, Hu X, Littrell K C, et al. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys[J].Journal of Nuclear Materials,2015,465:746.
13 Pint B A. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys[J].Journal of the American Ceramic Society,2003,86(4):686.
14 Braase L, May W E. Advanced fuels campaign FY 2014 accomplishments report[R].Idaho National Lab. (INL), Idaho Falls, ID, USA,2014.
15 Dryepondt S N, Hoelzer D T, Pint B A, et al. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding[R].Oak Ridge National Lab. (ORNL), Oak Ridge, TN, USA,2015.
16 Gamble K A, Barani T, Pizzocri D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J].Journal of Nuclear Materials,2017,491:55.
17 Powers J J, Worrall A, Robb K R, et al. ORNL analysis of operational and safety performance for candidate accident tolerant fuel and cladding concepts[J].IAEA TECDOC Series,2016:253.
18 Yamamoto Y, Gussev M N, Kim B, et al. Optimized properties on base metal and thin-walled tube of Generation II ATF FeCrAl[R].Oak Ridge National Lab.(ORNL), Oak Ridge, TN, USA,2015.
19 潘钱付,刘超红.国内院企合作首次研制出耐事故燃料全尺寸FeCrAl包壳管[EB/OL].[2018-04-15]http://mp.weixin.qq.com/s/DNAonyVd7d4prUCfH7q4nw.
20 Mcmurray J W, Hu R, Ushakov S V, et al. Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels[J].Journal of Nuclear Materials,2017,492:128.
21 Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J].Annals of Nuclear Energy,2015,85:763.
22 Terrani K A, Karlsen T M, Yamamoto Y. Input correlations for irradiation creep of FeCrAl and SiC based on in-pile Halden test results[R].Oak Ridge National Lab. (ORNL), Oak Ridge, TN, USA,2016.
23 Saunders S, Evans H E, Li M, et al. Oxidation growth stresses in an alumina-forming ferritic steel measured by creep deflection[J].Oxidation of Metals,1997,48(3-4):189,.
24 Massey C P, Terrani K A, Dryepondt S N, et al. Cladding burst behavior of Fe-based alloys under LOCA[J].Journal of Nuclear Mate-rials,2016,470:128.
25 Yano Y, Tanno T, Oka H, et al. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions[J].Journal of Nuclear Materials,2017,487:229.
26 Gussev M N, Byun T S, Yamamoto Y, et al. In-situ tube burst testing and high-temperature deformation behavior of candidate mate-rials for accident tolerant fuel cladding[J].Journal of Nuclear Mate-rials,2015,466:417.
27 Rybicki G C, Smialek J L. Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl+ Zr[J].Oxidation of Metals,1989,31(3):275.
28 Opila E J, Myers D L. Alumina volatility in water vapor at elevated temperatures[J].Journal of the American Ceramic Society,2004,87(9):1701.
29 Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J].Journal of Nuclear Materials,2013,440(1-3):420.
30 Terrani K A, Pint B A, Kim Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments[J].Journal of Nuclear Materials,2016,479:36.
31 Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J].Journal of Nuclear Materials,2013,440(1-3):420.
32 Pan D, Zhang R, Wang H, et al. Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam[J].Journal of Alloys and Compounds,2016,684:549.
33 Badini C, Laurella F. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism[J].Surface and Coatings Technology,2001,135(2):291.
34 Xu Y, Zhao S, Liu F, et al. Studies on oxidation and deuterium permeation behavior of a low temperature α-Al2O3-forming FeCrAl ferritic steel[J].Journal of Nuclear Materials,2016,477:257.
35 Sooby Wood E, Terrani K A, Nelson A T. Sensitivity of measured steam oxidation kinetics to atmospheric control and impurities[J].Journal of Nuclear Materials,2016,477:228.
36 Field K G, Briggs S A, Sridharan K, et al. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys[J].Journal of Nuclear Materials,2017,489:118.
37 Field K G, Gussev M N, Yamamoto Y, et al. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications[J].Journal of Nuclear Materials,2014,454(1-3):352.
38 Regina J R, Dupont J N, Marder A R. The effect of chromium on the weldability and microstructure of Fe-Cr-Al weld cladding[J].Welding Journal,2007,86(6):170.
39 Braase L A, Carmack W J. Advanced Fuels Campaign FY 2015 Accomplishments Report[R].Idaho National Lab. (INL), Idaho Falls, ID, USA,2015.
40 Katoh Y, Snead L L, Henager C H, et al. Current status and recent research achievements in SiC/SiC composites[J].Journal of Nuclear Materials,2014,455(1-3):387.
41 Snead L L, Nozawa T, Katoh Y, et al. Handbook of SiC properties for fuel performance modeling[J].Journal of Nuclear Materials,2007,371(1-3):329.
42 Yueh K, Terrani K A. Silicon carbide composite for light water reactor fuel assembly applications[J].Journal of Nuclear Materials,2014,448(1-3):380.
43 Lee Y, No H C, Lee J I. Design optimization of multi-layer silicon carbide cladding for light water reactors[J].Nuclear Engineering and Design,2017,311:213.
44 Katoh Y, Ozawa K, Shih C, et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects[J].Journal of Nuclear Materials,2014,448(1-3):448.
45 Petrie C M, Koyanagi T, Mcduffee J L, et al. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux[J].Journal of Nuclear Materials,2017,491:94.
46 Koyanagi T, Katoh Y. Mechanical properties of SiC composites neutron irradiated under light water reactor relevant temperature and dose conditions[J].Journal of Nuclear Materials,2017,494:46.
47 Koyanagi T, Ozawa K, Hinoki T, et al. Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process[J].Journal of Nuclear Materials,2014,448(1-3):478.
48 Mazzoccoli J P, Choi J, Xu P. Progress on the Westinghouse Accident Tolerant Fuel Programme[J].IAEA TECDOC Series,2016:286.
49 Lee Y, Kazimi M S. A structural model for multi-layered ceramic cylinders and its application to silicon carbide cladding of light water reactor fuel[J].Journal of Nuclear Materials,2015,458:87.
50 Stempien J D, Carpenter D M, Kohse G, et al. Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions[J].Nuclear Technology,2013,183(1):13.
51 Li B. Pellet cladding mechanical interactions of ceramic claddings fuels under light water reactor conditions[D].Columbia, South Carolina, USA: University of South Carolina,2013.
52 Katoh Y, Terrani K A. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015[R].Oak Ridge National Laboratory. (ORNL), Oak Ridge,TN,USA,2015.
53 Deck C P, Jacobsen G M, Sheeder J, et al. Characterization of SiC-SiC composites for accident tolerant fuel cladding[J].Journal of Nuclear Materials,2015,466:667.
54 Kohyama A, Kishimoto H, Park J S, et al. Irradiation programme of SiC/SiC fuel claddings at Halden reactor[J].IAEA TECDOC Series,2016:302.
55 Stone J G, Schleicher R, Deck C P, et al. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding[J].Journal of Nuclear Materials,2015,466:682.
56 Katoh Y, Snead L L, Szlufarska I, et al. Radiation effects in SiC for nuclear structural applications[J].Current Opinion in Solid State and Materials Science,2012,16(3):143.
57 Katoh Y, Dong S M, Kohyama A. Thermo-mechanical properties and microstructure of silicon carbide composites fabricated by nano-infiltrated transient eutectoid process[J].Fusion Engineering and Design,2002,61-62(Supplement C):723.
58 Katoh Y, Nozawa T, Snead L L, et al. Stability of SiC and its composites at high neutron fluence[J].Journal of Nuclear Materials,2011,417(1-3):400.
59 Jacobsen G M, Stone J D, Khalifa H E, et al. Investigation of the C-ring test for measuring hoop tensile strength of nuclear grade ceramic composites[J].Journal of Nuclear Materials,2014,452(1-3):125.
60 Ben-Belgacem M, Richet V, Terrani K A, et al. Thermo-mechanical analysis of LWR SiC/SiC composite cladding[J].Journal of Nuclear Materials,2014,447(1-3):125.
61 Lee Y. Safety of light water reactor fuel with silicon carbide cladding[D].Cambridge, Massachusetts, USA: Massachusetts Institute of Technology,2013.
62 Alva L, Shapovalov K, Jacobsen G M, et al. Experimental study of thermo-mechanical behavior of SiC composite tubing under high temperature gradient using solid surrogate[J].Journal of Nuclear Mate-rials,2015,466:698.
63 Angelici Avincola V, Guenoun P, Shirvan K. Mechanical perfor-mance of SiC three-layer cladding in PWRs[J].Nuclear Engineering and Design,2016,310:280.
64 Lee Y, Mckrell T J, Kazimi M S. Thermal shock fracture of hot silicon carbide immersed in water[J].Journal of Nuclear Materials,2015,467:172.
65 Park J, Kim I, Jung Y, et al. Long-term corrosion behavior of CVD SiC in 360 ℃ water and 400 ℃ steam[J].Journal of Nuclear Mate-rials,2013,443(1-3):603.
66 Henager C H, Schemer-Kohrn A L, Pitman S G, et al. Pitting corrosion in CVD SiC at 300 ℃ in deoxygenated high-purity water[J].Journal of Nuclear Materials,2008,378(1):9.
67 Kim D, Lee H J, Jang C, et al. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes[J].Journal of Nuclear Materials,2017,492:6.
68 Kim W, Hwang H S, Park J Y, et al. Corrosion behaviors of sintered and chemically vapor deposited silicon carbide ceramics in water at 360 ℃[J].Journal of Materials Science Letters,2003,22(8):581.
69 Kim W, Hwang H S, Park J Y. Corrosion behavior of reaction-bonded silicon carbide ceramics in high-temperature water[J].Journal of Materials Science Letters,2002,21(9):733.
70 Parish C M, Terrani K A, Kim Y, et al. Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments[J].Journal of the European Ceramic Society,2017,37(4):1261.
71 Terrani K A, Pint B A, Parish C M, et al. Silicon carbide oxidation in steam up to 2 MPa[J].Journal of the American Ceramic Society,2014,97(8):2331.
72 Kondo S, Lee M H, Hinoki T. Acceleration of the hot water corrosion of SiC by Ion 7.7. irradiation[J].IAEA TECDOC Series,2016:329.
73 Opila E J. Oxidation and volatilization of silica formers in water vapor[J].Journal of the American Ceramic Society,2003,86(8):1238.
74 Lee Y, Mckrell T J, Yue C, et al. Safety assessment of SiC cladding oxidation under loss-of-coolant accident conditions in light water reactors[J].Nuclear Technology,2013,183(2):210.
75 Hinoki T, Lee M H, Kano F, et al. Effect of constituents of silicon carbide composites on oxidation behaviour[J].IAEA TECDOC Series,2016:314.
76 Snead L L, Nozawa T, Katoh Y, et al. Handbook of SiC properties for fuel performance modeling[J].Journal of Nuclear Materials,2007,371(1-3):329.
77 Chun J, Lim S, Chung B, et al. Safety evaluation of accident-tole-rant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs[J].Nuclear Engineering and Design,2015,289:287.
78 Snead L L, Zinkle S J, White D P. Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation[J].Journal of Nuclear Materials,2005,340(2-3):187.
79 Ahn K. Comparison of silicon carbide and zircaloy4 cladding during LBLOCA[D].Cambridge, Massachusetts, USA: Massachusetts Institute of Technology,2006,4.
80 Katoh Y, Hashimoto N, Kondo S, et al. Microstructural development in cubic silicon carbide during irradiation at elevated temperatures[J].Journal of Nuclear Materials,2006,351(1-3):228.
81 Snead L L, Katoh Y, Connery S. Swelling of SiC at intermediate and high irradiation temperatures[J].Journal of Nuclear Materials,2007,367-370:677.
82 Kondo S, Katoh Y, Snead L L. Microstructural defects in SiC neutron irradiated at very high temperatures[J].Journal of Nuclear Materials,2008,382(2-3):160.
83 Katoh Y, Ozawa K, Hinoki T, et al. Mechanical properties of advanced SiC fiber composites irradiated at very high temperatures[J].Journal of Nuclear Materials,2011,417(1-3):416.
84 Braun J, Guéneau C, Alpettaz T, et al. Chemical compatibility between UO2 fuel and SiC cladding for LWRs. Application to ATF (accident-tolerant fuels)[J].Journal of Nuclear Materials,2017,487:380.
85 Silva C M, Katoh Y, Voit S L, et al. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures[J].Journal of Nuclear Materials,2015,460:52.
86 Lee Y, Kim H S, No H C. Failure probabilities of SiC clad fuel du-ring a LOCA in public acceptable simple SMR (PASS)[J].Nuclear Engineering and Design,2015,292:1.
87 Deng Y, Wu Y, Qiu B, et al. Development of a new pellet-clad mechanical interaction (PCMI) model and its application in ATFs[J].Annals of Nuclear Energy,2017,104:146.
88 Katoh Y, Snead L L, Cheng T, et al. Radiation-tolerant joining technologies for silicon carbide ceramics and composites[J].Journal of Nuclear Materials,2014,448(1-3):497.
89 Ferraris M, Salvo M, Casalegno V, et al. Joining of SiC-based materials for nuclear energy applications[J].Journal of Nuclear Materials,2011,417(1-3):379.
90 Koyanagi T, Katoh Y, Terrani K A, et al. Hydrothermal corrosion of silicon carbide joints without radiation[J].Journal of Nuclear Materials,2016,481:226.
91 Koyanagi T, Katoh Y, Kiggans J O, et al. Irradiation resistance of silicon carbide joint at light water reactor-relevant temperature[J].Journal of Nuclear Materials,2017,488:150.
92 Khalifa H E, Koyanagi T, Jacobsen G M, et al. Radiation stable, hybrid, chemical vapor infiltration/preceramic polymer joining of si-licon carbide components[J].Journal of Nuclear Materials,2017,487:91.
93 Causey R A, Wampler W R, Retelle J R, et al. Tritium migration in vapor-deposited β-silicon carbide[J].Journal of nuclear materials,1993,203(3):196.
94 Jung P. Diffusion and retention of helium in graphite and silicon carbide[J].Journal of Nuclear Materials,1992,191:377.
95 Farmer M T, Leibowitz L, Terrani K A, et al. Scoping assessments of ATF impact on late-stage accident progression including molten core-concrete interaction[J].Journal of Nuclear Materials,2014,448(1-3):534.
96 Farmer M T, Leibowitz L, Terrani K A, et al. Scoping assessments of ATF impact on late-stage accident progression including molten core-concrete interaction[J].Journal of Nuclear Materials,2014,448(1-3):534.
97 Brown N R, Wysocki A J, Terrani K A, et al. The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors[J].Annals of Nuclear Energy,2017,99:353.
98 Cockeram B V, Smith R W, Leonard K J, et al. Irradiation harde-ning in unalloyed and ODS molybdenum during low dose neutron irradiation at 300 ℃ and 600 ℃[J].Journal of Nuclear Materials,2008,382(1):1.
99 Byun T S, Li M, Cockeram B V, et al. Deformation and fracture properties in neutron irradiated pure Mo and Mo alloys[J].Journal of Nuclear Materials,2008,376(2):240.
100 Cheng B, Chou P, Kim Y. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance[J].EPJ Nuclear Sciences & Technologies,2016,2:5.
101 Cheng B, Kim Y, Chou P. Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding[J].Nuclear Engineering and Technology,2016,48(1):16.
102 Nelson A T, Sooby E S, Kim Y J, et al. High temperature oxidation of molybdenum in water vapor environments[J].Journal of Nuclear Materials,2014,448(1-3):441.
[1] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[2] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[3] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[4] 程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166.
[5] 张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
[6] 米翔, 龚俊, 曹文翰, 王宏刚, 任俊芳. 纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(18): 102-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed