Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 23030130-6    https://doi.org/10.11896/cldb.23030130
  高分子与聚合物基复合材料 |
基于组氨酸配合物的钯催化剂的制备及2-戊基蒽醌加氢性能
严华1,2, 杨晓野1, 周俊宏1, 袁中山1, 李德伏1, 王树东1,*
1 中国科学院大连化学物理研究所,洁净能源国家实验室,辽宁 大连 116023
2 中国科学院大学,北京 100049
Preparation of Pd Catalysts with Histidine Coordination Complex and Their Catalytic Performances on 2-Amylanthraquinone Hydrogenation
YAN Hua1,2, YANG Xiaoye1, ZHOU Junhong1, YUAN Zhongshan1, LI Defu1, WANG Shudong1,*
1 Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 8989KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双氧水是一种重要的现代化工原料,其生产工艺的关键是蒽醌加氢催化剂。以组氨酸配位Pd(NO3)2为前驱体,采用浸渍法制备了不同焙烧温度处理的Pd-his/SiO2-T(his表示组氨酸,T为焙烧温度)系列催化剂,并评价了其催化2-戊基蒽醌的加氢反应性能,其中Pd-his/SiO2-500的活性最高。作为对比,直接以Pd(NO3)2为前驱体制备了Pd/SiO2-500催化剂。通过多种表征技术充分研究了催化剂的性质,结果表明,随着焙烧温度的升高,Pd-his/SiO2-T系列催化剂的钯分散度在300~400 ℃时下降,在400~600 ℃时基本保持不变,并且所含残留碳成分逐渐减少,Pd0成分的占比和电子云密度上升。Pd-his/SiO2-500相比Pd/SiO2-500催化剂有更高的钯分散度,纳米颗粒更小,而且Pd0组分的电子云密度较高。评价实验表明,Pd-his/SiO2-500的蒽醌加氢反应的加氢效率达到12.8 g/L,选择性为99.67%,活性比Pd/SiO2-500高1.13倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
严华
杨晓野
周俊宏
袁中山
李德伏
王树东
关键词:  蒽醌加氢    组氨酸  焙烧温度  分散度    
Abstract: In order to improve the catalytic activity and selectivity of the catalyst for anthraquinone hydrogenation, a series of Pd-his/SiO2-T (his represents histidine, and T is the calcination temperature) catalysts were prepared by impregnation method, with the coordination complex of Pd-(NO3)2 and histidine as the precursor. The catalysts were prepared with SiO2 as the support through impregnation method under different calcination temperatures, and applied in anthraquinone hydrogenation reaction. For comparison, a Pd/SiO2-500 catalyst free of histidine was prepared with the optimal calcination temperature, and other conditions were kept the same. The SiO2 support and all the catalysts were investigated by various characterization techniques in detail. It was found that, with the calcination temperature rising, the Pd dispersion of catalysts decreased during 300—400 ℃, however from 400 ℃ to 600 ℃, the Pd dispersion nearly kept the same. The content of residual carbon species shrank, while the ratio of Pd0 component and its electron cloud density increased. The evaluation of anthraquinone hydrogenation showed that the highest hydrogenation efficiency of the catalysts reached 12.8 g/L, which was 2.13 times as the Pd/SiO2-500, and has a superior selectivity of 99.67%.
Key words:  anthraquinone hydrogenation    Pd    histidine    calcination temperature    dispersion
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TQ426.63  
  TQ123.6  
基金资助: 国家自然科学基金(21306184)
通讯作者:  *王树东,中国科学院大连化学物理研究所研究员、博士研究生导师。1985年在太原工业大学获得工学学士学位,1993年在大连理工大学获得工学博士学位,毕业后到中国科学院大连化学物理研究所工作。研究方向包括合成气甲烷化生产SNG技术、分布式制氢燃料电池氢源技术、高效吸附剂与分离过程强化技术、催化燃烧技术、选择性催化还原脱硝技术、氧化物可控制备及其应用。wangsd@dicp.ac.cn   
作者简介:  严华,2012年6月于重庆大学获得工学学士学位。现为中国科学院大学化学工程与技术专业博士研究生,在中国科学院大连化学物理研究所王树东研究员的指导下进行研究。主要研究领域为催化反应工程。
引用本文:    
严华, 杨晓野, 周俊宏, 袁中山, 李德伏, 王树东. 基于组氨酸配合物的钯催化剂的制备及2-戊基蒽醌加氢性能[J]. 材料导报, 2024, 38(12): 23030130-6.
YAN Hua, YANG Xiaoye, ZHOU Junhong, YUAN Zhongshan, LI Defu, WANG Shudong. Preparation of Pd Catalysts with Histidine Coordination Complex and Their Catalytic Performances on 2-Amylanthraquinone Hydrogenation. Materials Reports, 2024, 38(12): 23030130-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030130  或          http://www.mater-rep.com/CN/Y2024/V38/I12/23030130
1 Zhang M X, Dai Y S, Xie J Y, et al. Precious Metals, 2018, 39(1), 68(in Chinese).
张孟旭, 戴云生, 谢继阳, 等. 贵金属, 2018, 39(1), 68.
2 Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Angewandte Chemie International Edition, 2006, 45(42), 6962.
3 Drelinkiewicz A. Journal of Molecular Catalysis, 1992, 75, 321.
4 Drelinkiewicz A, Waksmundzka-Góra A. Journal of Molecular Catalysis A:Chemical, 2006, 246(1-2), 167.
5 Belykh L B, Skripov N I, Sterenchuk T P, et al. Catalysis Communications, 2020, 146, 106124.
6 Li A, Wang Y H, Ren J, et al. Applied Catalysis A:General, 2020, 593, 117422.
7 Sterenchuk T P, Belykh L B, Skripov N I, et al. Kinetics and Catalysis, 2018, 59(5), 585.
8 Zhang Y, Wang L, Wang N, et al. Microporous and Mesoporous Mate-rials, 2021, 312, 110672.
9 Yuan E, Wu C, Hou X, et al. Journal of Catalysis, 2017, 347, 79.
10 Wang L, Zhang Y, Ma Q, et al. RSC Advances, 2019, 9(59), 34581.
11 Zhang Y, Pan Z, Wang N, et al. Molecular Catalysis, 2021, 504, 111424.
12 Zhang Y, Wang L, Ma Q Q, et al. Catalysis Letters, 2022, 152, 1495.
13 Liang J Y, Wang F Y, Li W, et al. Molecular Catalysis, 2022, 524, 112264.
14 苏宏久,杨晓野,王树东,等. 中国专利,CN11094096,2016.
15 Yu J T, Cao J S, Du L H, et al. Applied Catalysis A:General, 2018, 555, 161.
16 Yang W Y, Ling F X, Shen Z Q, et al. Petrochemical Technology, 2017, 46(8), 985(in Chinese).
杨卫亚, 凌凤香, 沈智奇, 等. 石油化工, 2017, 46 (8), 985.
17 Wu Q L, Shen C Y, Liu C J. Applied Surface Science, 2023, 607, 154976.
18 Li B, Li H, Weng W Z, et al. Fuel, 2013, 103, 1032.
19 Liang H R, Wang L, Liu G Z. Chemical Industry and Engineering Progress, 2021, 40(4), 2060(in Chinese).
梁海瑞, 王涖, 刘国柱. 化工进展, 2021, 40(4), 2060.
20 Zhao Z J, Liu F, Qiu L M, et al. Acta Physico-Chimica Sinica, 2008, 24(9), 1685(in Chinese).
赵志娟, 刘芬, 邱丽美, 等. 物理化学学报, 2008, 24(9), 1685.
21 Kosydar R, Drelinkiewicz A, Lalik E, et al. Applied Catalysis A:General, 2011, 402(1-2), 121.
22 Li X T, Su H J, Ren G Y, et al. Applied Catalysis A:General, 2016, 517, 168.
23 Bai H X, Fang X C, Peng C. ACS Sustainable Chemistry & Engineering, 2019, 7(8), 7700.
24 Deng M Y, Zhang X X, Zong B N. Acta Petrolei Sinica(Petroleum Processing Section), 2022, 38(5), 1001(in Chinese).
邓明杨, 张晓昕, 宗保宁. 石油学报(石油加工), 2022, 38(5), 1001.
25 Pan Z Y. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(3), 478(in Chinese).
潘智勇. 石油学报(石油加工), 2021, 37(3), 478.
26 Wang F Y, Jia Y M, Liang J Y, et al. Catalysis Science & Technology, 2022, 12, 1766.
27 Ingle A A, Ansari S Z, Shende D Z, et al. Journal of the Indian Chemical Society, 2020, 97, 1033.
28 Guo Y Y, Dai C N, Lei Z G. Chinese Journal of Catalysis, 2018, 39(6), 1070.
29 Guo Y Y, Dai C N, Lei Z G. Chemical Engineering and Processing-Process Intensification, 2019, 136, 211.
30 Li W Q, Wang F M, Zhang X B, et al. Applied Catalysis A:General, 2021, 619, 118124.
31 Wang Y H, Peng M, Ye C L, et al. Applied Organometallic Chemistry, 2019, 33(9), e5076.
32 Feng J T, Wang H Y, Evans D G, et al. Applied Catalysis A:General, 2010, 382(2), 240.
33 Xie J Y, Wang H Q, Yang J, et al. Chemical Industry and Engineering Progress, 2021, 40(2), 901(in Chinese).
谢继阳, 王红琴, 杨杰, 等. 化工进展, 2021, 40(2), 901.
34 Cai W Q, Zhuo J L, Fang J M, et al. Chinese Journal of Chemical Engineering, 2019, 27(8), 1863.
35 Li X T, Su H J, Li D W, et al. Applied Catalysis A:General, 2016, 528, 168.
[1] 皮晓琳, 李鸿鹏, 田乙然, 童应成, 倪文若, 袁藤瑞, 唐振艳. 钯催化环加成反应构建中环化合物的研究进展[J]. 材料导报, 2024, 38(12): 22110292-12.
[2] 李大卫, 王树东, 苏宏久, 严华. SiO2包覆膜对介孔Pd/SiO2催化蒽醌加氢制备双氧水的作用[J]. 材料导报, 2023, 37(24): 22120042-5.
[3] 刘泽良, 李慧剑. 压力下PdH2结构稳定性和力学性能的第一性原理研究[J]. 材料导报, 2023, 37(12): 21090091-6.
[4] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[5] 赵晶璨, 王环江, 周国永, 宝冬梅, 罗迎春. 钯催化末端炔烃羰基化研究进展[J]. 材料导报, 2020, 34(Z2): 543-548.
[6] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[7] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed