Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040168-9    https://doi.org/10.11896/cldb.24040168
  无机非金属及其复合材料 |
电化学阻抗谱技术在水处理分离膜研究中的应用进展
来仁杰, 辛俊伟, 王磊*, 王旭东, 吕永涛
西安建筑科技大学环境与市政工程学院,陕西省膜分离技术研究院,陕西省膜分离重点实验室,西安 710055
Application Progress on Electrochemical Impedance Spectroscopy in the Study of Separation Membranes for Water Treatment
LAI Renjie, XIN Junwei, WANG Lei*, WANG Xudong, LYU Yongtao
Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 13102KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 膜分离技术是一种无相变、低能耗、高效率的水处理技术,在海水淡化、饮用水处理、污水深度处理和工业分离等领域已有广泛的应用。电化学阻抗谱(EIS)技术具有原位、快速、无损、可重复性高等优点,通过对反馈信号进行电路拟合可探究离子在膜表面及膜孔内部的分布状态和迁移行为,是深入研究水处理分离膜构效关系及运行状态的一种有力方法。本文简述了EIS技术应用于水处理分离膜研究中的基本原理,在此基础上综述了EIS技术在膜结构、膜性能及膜过程中产生的浓差极化、膜污染等问题研究中的应用进展。最后进行总结并对其发展作出了展望,以期为采用EIS技术对水处理分离膜进行更深入的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
来仁杰
辛俊伟
王磊
王旭东
吕永涛
关键词:  电化学阻抗谱  膜分离技术  膜结构  膜性能  浓差极化  膜污染    
Abstract: Membrane separation technology is a phase-change-free, low-energy, high-efficiency water treatment technology, which has been widely used in the fields of seawater desalination, drinking water treatment, deep treatment of sewage and industrial separation. Electrochemical impedance spectroscopy (EIS) has the advantages of in-situ, fast, non-destructive and reproducible, etc. By fitting the feedback signal to the equivalent circuit, it can investigate the distribution state and migration behavior of ions on the membrane surface and inside the membrane pores, and it is a powerful method for in-depth study of the constitutive relationship and operational status of water treatment separation membranes. This paper briefly describes the basic principles of EIS technology applied to the study of water treatment separation membranes, on this basis, the progress of the application of EIS technology in the study of membrane structure, membrane performance and the problems of concentration polarization and membrane contamination generated in the membrane process is reviewed. Finally, it is summarized and the outlook of its development is made, with a view to providing a reference for more in-depth research on water treatment separation membranes using EIS technology.
Key words:  electrochemical impedance spectroscopy    membrane separation technology    membrane structure    membrane property    concentration polarization    membrane fouling
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TQ028  
  TQ051.893  
基金资助: 国家重点研发计划(2022YFC2904302);陕西省教育厅服务地方专项科研计划(22JC041);西藏自治区科技计划(XZ202101ZY0006G)
通讯作者:  王磊,西安建筑科技大学教授、博士研究生导师。目前主要从事膜分离技术开发与应用等方面的研究工作。wl0178@126.com   
作者简介:  来仁杰,现为西安建筑科技大学环境与市政工程学院硕士研究生,师从王磊教授,主要研究方向为水处理膜分离技术。
引用本文:    
来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
LAI Renjie, XIN Junwei, WANG Lei, WANG Xudong, LYU Yongtao. Application Progress on Electrochemical Impedance Spectroscopy in the Study of Separation Membranes for Water Treatment. Materials Reports, 2025, 39(8): 24040168-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040168  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040168
1 Shannon M, Bohn P, Elimelech M, et al. Nature, 2008, 452, 301.
2 Xiao S J, Huo X W, Tong Y X, et al. Separation and Purification Technology, 2021, 274, 18467.
3 Yu H K, Li X, Chang H Q, et al. Journal of Membrane Science, 2020, 613, 118469.
4 Adigüzel M, Erkmen J, Yilmaz M T. Journal of Cleaner Production, 2023, 408, 136814.
5 Dastbaz A, Karimi-sabet J, Ahadi H, et al. Desalination, 2017, 424, 62.
6 Sztekler K, Kalawa W, Bujok T, et al. Desalination, 2024, 574, 117269.
7 Peng H W, Su Y F, Liu X F, et al. Advanced Functional Materials, 2023, 33(51), 2305815.
8 Wang X, Im S, Jung B, et al. Environmental Science & Technology, 2023, 57(25), 9405.
9 Wang S, Zhang J, Gharbi O, et al. Nature Reviews Methods Primers, 2021, 1(1), 41.
10 Su Z F, Abbasi F, Leitch J J, et al. Journal of Electroanalytical Chemistry, 2019, 848, 113281.
11 Su Z F, Leitch J J, Lipkowski J. Langmuir, 2022, 38,8398.
12 Chen H J H, Huang Y C, Lee T N, et al. IEEE Transactions on Electron Devices, 2020, 67(9), 3761.
13 Niya S M R, Hoorfar M. Journal of Power Sources, 2013, 240, 281.
14 Becherif M, Péra M C, Hissel D, et al. Journal of Cleaner Production, 2018, 171, 1510.
15 Xu A T, Zhang F, Luo B, et al. International Journal of Electrochemical Science, 2013, 8(2), 1895.
16 Upadhyay V, Battocchi D. Progress in Organic Coatings, 2017, 110, 42.
17 Guo C, Li H, Zhang T. New Chemical Materials, 2019, 40(5), 415.
18 Gu B, Renaud D L, Sanaei P, et al. Journal of Fluid Mechanics, 2020, 902, A5.
19 Chamani H, Rabbani A, Russell K P, et al. Journal of Membrane Science, 2023, 678, 121673.
20 Zuo D Y, Li H J, Liu H T, et al. Journal of Porous Materials, 2012, 19(6), 1015.
21 Luo Q Z, Huang Q, Chen Z, et al. Materials Research Express, 2018, 5(6), 065507.
22 Huang Q, Luo Q Z, et al. Environmental Science: Water Research & Technology, 2018, 4(8), 1145.
23 Liu J Y, Chen Z, Yao L, et al. Electrochemistry Communications, 2019, 106, 106517.
24 Yin C, Wang S, Zhang Y, et al. Environmental Science: Water Research & Technology, 2017, 3(6), 1037.
25 Zhang Y, Chen Z, Yao L, et al. Materials Research Express, 2018, 5(4), 045606.
26 Luo Q Z, Huang Q, Chen Z, et al. Polymers, 2018, 10(10), 1123.
27 Liu J Y, Chen Z, Yao L, et al. Materials Chemistry Frontiers, 2019, 3(8), 1518.
28 Wang Z H, Ma J. Desalination, 2012, 286, 69.
29 Díaz D R, Carmona F J, Palacio L, et al. Chemical Engineering Science, 2018, 178, 27.
30 Zhang W, Ma J, Wang P, et al. Journal of Membrane Science, 2016, 502, 37.
31 Coster H G L, Kim K J, Dahlan K, et al. Journal of Membrane Science, 1992, 66(1), 19.
32 Cañas A, Ariza M J, Benavente J. Journal of Membrane Science, 2001, 183(1), 135.
33 Cañas A, Benavente J. Journal of Colloid and Interface Science, 2002, 246(2), 328.
34 Antony A, Chilcott T, Coster H, et al. Journal of Membrane Science, 2013, 425, 89.
35 Xu Y, Wang M, Ma Z, et al. Desalination, 2011, 271(1-3), 29.
36 Li Y J, Shi S Y, Cao H B, et al. ACS Applied Nano Materials, 2020, 3(1), 588.
37 Liang Y Z, Gao F, Wang L, et al. Journal of Membrane Science, 2021, 619, 118747.
38 Urper-bayram G M, Sayinli B, Bossa N, et al. Polymer Bulletin, 2020, 77(7), 3411.
39 Wang C, Zhao Y, Mujahid M, et al. Membrane Science and Technology, 2024, 44(1), 157(in Chinese).
王超, 赵一, Mujahid M, 等. 膜科学与技术, 2024, 44(1), 157.
40 Otitoju T A, Ahmad A L, Ooi B S. RSC Advances, 2018, 8(40), 22710.
41 Yao L, Long Z Y, Chen Z, et al. Membranes, 2020, 10(9), 214.
42 Xiao J T, Sun Q, Liu L Y, et al. Chinese Journal of Chemical Engineering, 2021, 39, 96.
43 Bason S, Oren Y, Freger V. Journal of Membrane Science, 2007, 302(1), 10.
44 Freger V, Bason S. Journal of Membrane Science, 2007, 302(1), 1.
45 Shaffer D L, Feldman K E, Chan E P, et al. Journal of Membrane Science, 2019, 583, 248.
46 Zhang D Y, Jiang C X, Li Y Y, et al. ACS Applied Materials & Interfaces, 2019, 11(40), 36626.
47 Jiang W B, Lin L, Xu X S, et al. Journal of Membrane Science, 2019, 572, 545.
48 Freger V. Advances in Colloid and Interface Science, 2023, 319, 102972.
49 Szymczyk A, Fievet P. Desalination, 2006, 200(1), 122.
50 Oatley D L, Llenas L, Aljohani N H M, et al. Desalination, 2013, 315, 100.
51 Montalvillo M, Silva V, Palacio L, et al. Desalination and Water Treatment, 2011, 27(1-3), 25.
52 Zhao K, Jia J. Journal of Colloid and Interface Science, 2012, 386(1), 16.
53 Montalvillo M, Silva V, Palacio L, et al. Journal of Membrane Science, 2014, 454, 163.
54 Efligenir A, Fievet P, Déon S, et al. Journal of Membrane Science, 2015, 477, 172.
55 Kaganovich M, Zhang W, Freger V, et al. Water Research, 2019, 161, 381.
56 Shirazi S, Lin C J, Chen D. Desalination, 2010, 250(1), 236.
57 Chen Q B, Wang J Y, Liu Y, et al. Water Research, 2020, 179, 115847.
58 Fontananova E, Zhang W J, Nicotera I, et al. Journal of Membrane Science, 2014, 459, 177.
59 Bohinc K, Kralj-iglic V, Iglic A. Electrochimica Acta, 2001, 46(19), 3033.
60 Zhang W J, Wang P P, Ma J, et al. Electrochimica Acta, 2016, 216, 110.
61 Gao Y B, Li W Y, Lay W C L, et al. Desalination, 2013, 312, 45.
62 Yeo S Y, Wang Y, Chilcott T, et al. Journal of Membrane Science, 2014, 467, 292.
63 She Q H, Wang R, Fane A G, et al. Journal of Membrane Science, 2016, 499, 201.
64 Goh P S, Lau W J, Othman M H D, et al. Desalination, 2018, 425, 130.
65 Hu Z X, Antony A, Leslie G, et al. Journal of Membrane Science, 2014, 453, 320.
66 Ho J S, Low J H, Sim L N, et al. Journal of Membrane Science, 2016, 518, 229.
67 Cen J, Vukas M, Barton G, et al. Journal of Membrane Science, 2015, 484, 133.
68 Hoek E M V, Elimelech M. Environmental Science & Technology, 2003, 37(24), 5581.
69 Wang D, Wang X Y, Chen X, et al. China Environmental Science, 2022, 42(4), 1618(in Chinese).
王蝶, 王小洋, 陈曦, 等. 中国环境科学, 2022, 42(4), 1618.
70 Sim L N, Gu J, Coster H G L, et al. Desalination, 2016, 379, 126.
71 Sim L N, Wang Z J, Gu J, et al. Journal of Membrane Science, 2013, 443, 45.
72 Ho J S, Sim L N, Gu J, et al. Journal of Membrane Science, 2016, 500, 55.
73 Teng J H, Deng Y, Zhou X N, et al. Frontiers of Environmental Science & Engineering, 2023, 17(10), 129.
74 Ng H Y, Elimelech M. Journal of Membrane Science, 2004, 244(1), 215.
75 Zhang L L, Jia H, Wang J, et al. Journal of Membrane Science, 2020, 594, 117443.
76 Ho J S, Sim L N, Webster R D, et al. Desalination, 2017, 407, 75.
[1] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[2] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[3] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[4] 高正源, 白佳龙, 孙鹏飞, 安治国. 陶瓷膜在饮用水处理中的应用现状[J]. 材料导报, 2024, 38(16): 23010017-10.
[5] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[6] 姚艺, 任延杰, 彭玉宬, 陈荐, 邱玮, 周立波. 304不锈钢在熔融多硫化钠中的高温腐蚀行为研究[J]. 材料导报, 2023, 37(14): 22010026-5.
[7] 高正源, 刘洋志, 任俊州, 安治国. 基于计算流体动力学的陶瓷膜过滤过程模拟研究进展[J]. 材料导报, 2021, 35(15): 15094-15106.
[8] 孙娜,王铎,汪锰. 正渗透膜材料及其制备方法的研究进展[J]. 材料导报, 2019, 33(17): 2966-2975.
[9] 李冰洁, 江旭东, 潘春旭. 铜锡青铜合金腐蚀过程中的电化学与微结构特征研究*[J]. 《材料导报》期刊社, 2017, 31(11): 138-143.
[10] 郭浩, 田一梅, 裴云生, 陈瑛, 刘星飞. 氯离子对球墨铸铁管土壤腐蚀影响机理研究*[J]. 《材料导报》期刊社, 2017, 31(11): 151-157.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[7] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[8] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[9] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[10] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed