Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24020033-7    https://doi.org/10.11896/cldb.24020033
  无机非金属及其复合材料 |
基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究
杨军兆1, 张戎令1,2,*, 薛彦瑾1,2, 王小平1, 窦晓峥3, 宋毅1
1 兰州交通大学土木工程学院, 兰州 730070
2 兰州交通大学道桥工程灾害防治技术国家地方联合工程实验室, 兰州 730070
3 中铁大桥局集团有限公司设计分公司, 武汉 430050
Study on Corrosion Resistance Coefficient and Micro-mechanism of Concrete Under Sulphate Environment Based on Fractal Dimension
YANG Junzhao1, ZHANG Rongling1,2,*, XUE Yanjin1,2, WANG Xiaoping1, DOU Xiaozheng3, SONG Yi1
1 College of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 Bridge Engineering National Local Joint Engineering Laboratory of Disaster Prevention and Contral Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
3 China Railway Construction Bridge Engineering Bureau Group Co.,Ltd., Wuhan 430050, China
下载:  全 文 ( PDF ) ( 6616KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究硫酸盐环境对混凝土的性能影响,基于新疆台特玛湖地区的实际工程环境,模拟现场腐蚀环境进行室内硫酸盐腐蚀试验。研究了混凝土宏观抗蚀系数、微观孔结构与腐蚀产物等随侵蚀时间的演变规律。并对混凝土孔结构进行分形维数的计算,分析了分形维数、孔隙率与抗蚀系数的关系。结果表明:随着腐蚀时间的延长,抗蚀系数呈先增大后减小的趋势;总孔隙率先降低后增加,有害孔与多害孔占比先减后增,孔隙率与抗蚀系数呈线性关系;分形维数和孔隙大小有关,腐蚀前期混凝土内部孔结构细化,密实度增加,孔隙分布复杂,分形维数增大,当钙矾石、石膏等膨胀性腐蚀产物发生膨胀作用,混凝土内部孔结构粗化,孔隙分布简单,分形维数降低。通过XRD侵蚀产物分析可知钙矾石、石膏产生膨胀作用是引起混凝土劣化的主要原因,且侵蚀早期主要发生钙矾石侵蚀,侵蚀后期主要发生石膏侵蚀。研究成果可为西北盐渍土地区混凝土抗腐蚀提供参考和借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨军兆
张戎令
薛彦瑾
王小平
窦晓峥
宋毅
关键词:  硫酸盐腐蚀  抗蚀系数  核磁共振  孔结构  分形维数    
Abstract: In order to study the effect of sulphate environment on the performance of concrete, indoor sulphate corrosion test which simulated the on-site engineering corrosive environment in Xinjiang Taitama Lake area was carried out. From the perspective of concrete macroscopic corrosion resistance coefficient, microscopic pore structure and the evolution of corrosion products with the erosion time and other perspectives, and the pore structure of concrete fractal dimension calculation, analysed the relationship between fractal dimension, porosity and corrosion resistance coefficient. The results show that with the growth of corrosion time, the corrosion resistance coefficient is first enhanced and then weakened;the total porosity first decreases and then increases, the harmful pore and multi-harmful pore ratio first reduces and then increases. The porosity and corrosion resistance coefficient have a linear relationship. Fractal dimension is related to the pore size, at the pre-erosion, the pore structure of concrete is refined, the compactness of the concrete increases, the distribution of pore space is complex, fractal dimensions increase. When the expansion effect of calcium alumina, gypsum and other expansive corrosion products occurs, the internal pore structure of concrete is coarsened, the pore distribution is simple, and the fractal dimension decreases. Through the analysis of XRD erosion products, it is found that the expansion of calcium alumina and gypsum is the main reason for the deterioration of the concrete, and calcium alumina erosion mainly occurs in the early stage of erosion, and gypsum erosion mainly occurs in the late stage of erosion. The research results can provide some references for the corrosion resistance of concrete in the salty soil area of Northwest China.
Key words:  sulfate attack    coefficient of corrosion resistance    nuclear magnetic resonance    pore structure    fractal dimension
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TU528  
基金资助: 国家重点研发计划政府间重点专项(2024YFE0115200);国家自然科学基金-铁路基础研究联合基金(U2368209);甘肃省交通运输厅基金项目(2023-16)
通讯作者:  *张戎令,兰州交通大学教授,加拿大渥太华大学访问学者、英国卡迪夫大学高级研究学者。主要从事西北干寒地区材料耐久性与结构全寿命研究。mogzrlggg@163.com   
作者简介:  杨军兆,兰州交通大学土木工程学院硕士研究生,在张戎令教授的指导下进行研究。目前主要从事西北干寒地区材料耐久性与结构全寿命研究。
引用本文:    
杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
YANG Junzhao, ZHANG Rongling, XUE Yanjin, WANG Xiaoping, DOU Xiaozheng, SONG Yi. Study on Corrosion Resistance Coefficient and Micro-mechanism of Concrete Under Sulphate Environment Based on Fractal Dimension. Materials Reports, 2025, 39(7): 24020033-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020033  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24020033
1 Yu H F, Sun W, Wu W F, et al. Journal of the Chinese Ceramic Society, 2003, 31(8), 765 (in Chinese).
余红发, 孙伟, 武卫锋, 等. 硅酸盐学报, 2003, 31(8), 765.
2 Sahmaran M, Erdem T K, Yaman I O. Construction and Building Materials, 2007, 21(8), 1771.
3 Bassuoni M T, Nehdi M L. Cement and Concrete Research, 2009, 39(3), 206.
4 Müllauer W, Beddoe R E, Heinz D. Cement and Concrete Research, 2013, 52(10), 208.
5 Jin Z Q, Sun W, Zhang Y S, et al. Journal of the Chinese Ceramic Society, 2006, 34(5), 630 (in Chinese).
金祖权, 孙伟, 张云升, 等. 硅酸盐学报, 2006, 34(5), 630.
6 Gao R D, Zhao S B, Li Q B, et al. China Civil Engineering Journal, 2010, 43(2), 48 (in Chinese).
高润东, 赵顺波, 李庆斌, 等. 土木工程学报, 2010, 43(2), 48.
7 Zhang X B, Zhang R L, Ning G X, et al. Journal of Railway Science and Engineering, 2021, 18(6), 1471 (in Chinese).
张新博, 张戎令, 宁贵霞, 等. 铁道科学与工程学报, 2021, 18(6), 1471.
8 Jiang L, Niu D T. Construction and Building Materials, 2016, 117(8), 88.
9 Gu Y S, Martin R P, Metalssi O O, et al. Cement and Concrete Research, 2019, 123, 105766.
10 Chen Y, Liu P, Yu Z W. Construction and Building Materials, 2020, 260, 119951.
11 Liu J P, Liu Y J, Shi L, et al. Journal of Building Materials, 2016, 19(6), 993 (in Chinese).
刘加平, 刘玉静, 石亮, 等. 建筑材料学报, 2016, 19(6), 993.
12 Len F G, Feng N Q, Xing F. Concrete, 2000(8), 6 (in Chinese).
冷发光, 冯乃谦, 刑锋. 混凝土, 2000(8), 6.
13 Qiao H X, He Z M, Liu C L. Journal of Harbin Institute of Technology, 2008, 40(8), 1302 (in Chinese).
乔宏霞, 何忠茂, 刘翠兰. 哈尔滨工业大学学报, 2008, 40(8), 1302.
14 Yuan L D, Niu D T, Jiang L, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(6), 1171(in Chinese).
苑立冬, 牛荻涛, 姜磊, 等. 硅酸盐通报, 2013, 32(6), 1171.
15 Zhao Q X, Li D H, Yan G L, et al. Journal of the Chinese Ceramic Society, 2012, 40(2), 217(in Chinese).
赵庆新, 李东华, 闫国亮, 等. 硅酸盐学报, 2012, 40(2), 217.
16 Liu J H, Zhao L, Ji H G. Chinese Journal of Engineering, 2017, 39(8), 1278 (in Chinese).
刘娟红, 赵力, 纪洪广. 工程科学学报, 2017, 39(8), 1278.
17 Xue H J, Zheng J T, Zou C X, et al. Building Structure, 2022, 52(8), 112(in Chinese).
薛慧君, 郑建庭, 邹春霞, 等. 建筑结构, 2022, 52(8), 112.
18 Shi D S, Huai B D, Ma Z, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(1), 248(in Chinese).
石东升, 淮炳栋, 马政, 等. 硅酸盐通报, 2023, 42(1), 248.
19 Jin S S, Zheng G P, Yu J. Construction and Building Materials, 2020, 257, 119434 .
20 Gao S, Ji Y, Qin Z W, et al. Construction and Building Materials, 2020, 358, 129451.
21 Sun H R, Zou C X, Xue H J, et al. Journal of Building Materials, 2022, 25(2), 124 (in Chinese).
孙浩然, 邹春霞, 薛慧君, 等. 建筑材料学报, 2022, 25(2), 124.
22 Zhu Z D, Huo W W, Sun H, et al. Journal of Building Engineering, 2023, 67, 106011.
23 Zhu C, Liu X G, Liu C, et al. Construction and Building Materials, 2022, 353, 129101.
24 Tang L Y, Huang T, Wang W B, et al. Journal of Central South University (Science and Technology), 2023, 54(5), 1954 (in Chinese).
唐丽云, 黄涛, 汪卫兵, 等. 中南大学学报(自然科学版), 2023, 54(5), 1954.
25 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties:GB/T 50081-2019, China Architecture & Building Press, China, 2019(in Chinese).
中华人民共和国住房与城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081-2019, 中国建筑工业出版社, 2019.
26 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete:GB/T 50082-2009, China Architecture & Building Press, China, 2009(in Chinese).
中华人民共和国住房与城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009, 中国建筑工业出版社, 2009.
27 Wu Z W, Lian H Z. High performance concrete, China Railway Press, China, 1999 (in Chinese).
吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999.
28 Zhang C M, Chen Z B, Zhang Z S. Journal of Oil and Gas Technology, 2007, 29(4), 80(in Chinese).
张超谟, 陈振标, 张占松. 石油天然气学报, 2007, 29(4), 80.
[1] 黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
[2] 王张翔, 金浪, 陈培鑫, 陈飞翔, 姚天豫, 陈徐东. 基于CT和NMR技术的UHPC孔隙结构研究[J]. 材料导报, 2025, 39(5): 24020073-6.
[3] 吴剑锋, 黄雨悦, 李赫赫, 马德源, 王彩华. 混凝土单轴压缩表面裂纹分布的一致分形特征[J]. 材料导报, 2025, 39(4): 23030047-7.
[4] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[5] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[6] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[7] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[8] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[9] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[10] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[11] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[12] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[13] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[14] 王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
[15] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed