Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24020066-9    https://doi.org/10.11896/cldb.24020066
  高分子与聚合物基复合材料 |
离子液体在纳米材料制备中的应用进展
李翠利1, 申纯宇2, 杨英2, 王兴龙2, 汤建伟2,3,4, 化全县1,3, 刘咏1,3,4, 刘鹏飞2,3,4, 丁俊祥2,3,4, 申博2,3,4, 王保明2,3,4,*
1 郑州大学化工学院, 郑州 450001
2 郑州大学生态与环境学院, 郑州 450001
3 国家钙镁磷复合肥技术研究推广中心, 郑州 450001
4 河南省减污降碳协同工程技术研究中心, 郑州 450001
Research Progress on the Application of Ionic Liquids in the Preparation of Nano Materials
LI Cuili1, SHEN Chunyu2, YANG Ying2, WANG Xinglong2, TANG Jianwei2,3,4, HUA Quanxian1,3, LIU Yong1,3,4, LIU Pengfei2,3,4, DING Junxiang2,3,4, SHEN Bo2,3,4, WANG Baoming2,3,4,*
1 College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
2 School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
3 National Calcium Magnesium Phosphate Compound Fertilizer Technology Research and Promotion Center, Zhengzhou 450001, China
4 Henan Provincial Collaborative Engineering Technology Research Center for Pollution Reduction and Carbon Reduction, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 25783KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 离子液体(Ionic liquids,IL)作为一种创新的环保绿色溶剂,具有可调控的物理化学性质、广泛的溶解能力、较好的生物相容性以及卓越的离子导电性,使得其作为结构导向剂、反应溶剂、还原剂和溶剂等在纳米材料制备领域得到了广泛的应用。本文针对不同种类的离子液体在纳米材料制备与改性领域的突出性能,详细阐述了离子液体在纳米材料制备领域的应用,分析了离子液体在金属、金属氧化物、碳纳米管和纳米纤维素等纳米材料制备中的应用进展,同时对离子液体在调控纳米材料的稳定性、形貌以及性能等方面的功能特点进行了总结,为未来离子液体在纳米材料制备方面的应用提出了新的建议,指出离子液体精确调控制备特定功能的纳米材料是未来的重要研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李翠利
申纯宇
杨英
王兴龙
汤建伟
化全县
刘咏
刘鹏飞
丁俊祥
申博
王保明
关键词:  离子液体  纳米材料  团聚  催化  合成  聚合物  复合材料    
Abstract: As an innovative environmentally friendly green solvent, ionic liquids(IL)have been widely used as structure-directing agents, reaction solvents, reducing agents and solvents in the field of nanomaterial preparation due to their adjustable physical and chemical properties, wide solubility, biocompatibility and excellent ionic conductivity. In view of the outstanding performance of different kinds of ionic liquids in the field of preparation and modification of nanomaterials, the application of ionic liquids in the field of preparation of nanomaterials is described in detail. The application progress of ionic liquids in the preparation of nanomaterials such as metals, metal oxides, carbon nanotubes and nanocellulose is analyzed. At the same time, the functional characteristics of ionic liquids in regulating the stability, morphology and properties of nanomaterials are summarized. New suggestions are put forward for the application of ionic liquids in the preparation of nanomaterials in the future. It is pointed out that the precise regulation of ionic liquids to prepare specific functional nanomaterials is an important research direction in the future.
Key words:  ionic liquid    nanomaterial    agglomeration    catalysis    synthesis    polymer    composite material
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TB383  
基金资助: 国家自然科学基金(22278381)
通讯作者:  *王保明,博士,郑州大学生态与环境学院副教授、博士研究生导师。主要从事环境与能源功能材料制备、固废处理与资源化利用、新型肥料创制等方面的研究。ziqiangdere@126.com   
作者简介:  李翠利,郑州大学化工学院硕士研究生,师从王保明副教授,主要研究方向为无机纳米材料制备。
引用本文:    
李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
LI Cuili, SHEN Chunyu, YANG Ying, WANG Xinglong, TANG Jianwei, HUA Quanxian, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Research Progress on the Application of Ionic Liquids in the Preparation of Nano Materials. Materials Reports, 2025, 39(7): 24020066-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020066  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24020066
1 Guo L, He N, Zhao Y, et al. Theranostics, 2020, 10(7), 3206.
2 Tang H W, Wang J L, Chang Z R, et al. Surface Technology, 2007(1), 56 (in Chinese).
汤宏伟, 王蒋亮, 常照荣, 等. 表面技术, 2007(1), 56.
3 Zhang H. Ionic liquid-based synthesis of ultrafine metal nanomaterials and study on its electrocatalytic performance. Master's Thesis, North University of China, China, 2020 (in Chinese).
张虹. 基于离子液体的超细金属纳米材料的制备及其电催化性能研究. 硕士学位论文, 中北大学, 2020.
4 Xia W, Zhu J, Guo W, et al. Journal of Materials Chemistry A, 2014, 2(30), 11606.
5 Wang Q W, Wang W J, Chen W J, et al. China Pulp & Paper, 2023(12), 52 (in Chinese).
王钦雯, 王雯君, 陈玟锦, 等. 中国造纸, 2023(12), 52.
6 Stankic S, Suman S, Haque F, et al. Journal of Nanobiotechnology, 2016, 14(1), 73.
7 Yu J, Yang X, Zhang Y D, et al. Modern Chemical Industry, 2024, 44(2), 76 (in Chinese).
于佳, 杨茜, 章亚东. 等. 现代化工, 2024, 44(2), 76.
8 Liew K M, Lei Z X, Zhang L W. Composite Structures, 2015, 120, 90.
9 Tie S N, Huanc W H, Sun Z B, et al. China Powder Science and Technology, 2024, 30(1), 1 (in Chinese).
铁生年, 黄伟豪, 孙增宝, 等. 中国粉体技术, 2024, 30(1), 1.
10 Noremylia M B, Hassan M Z, Ismail Z. International Journal of Biological Macromolecules, 2022, 206, 954.
11 Zhu Y A, Chen Q, Kong B H, et al. Journal of Chinese Institute of Food Science and Technology, 2024, 24(1), 466(in Chinese).
朱迎澳, 陈倩, 孔保华, 等. 中国食品学报, 2024, 24(1), 466.
12 Chen T T, Yin J T, Xu Y J, et al. CIESC Journal, 2021, 72(5), 2436 (in Chinese).
陈婷婷, 尹炯婷, 许映杰. 等. 化工学报, 2021, 72(5), 2436.
13 Huang Y L. Mining and Metallurgy, 1997(4), 62 (in Chinese).
黄艳玲. 矿冶, 1997(4), 62.
14 Wu Q, Miao W, Zhang Y, et al. Nanotechnology Reviews, 2020, 9(1), 259.
15 Wu W, Jiang C, Roy V A L. Nanoscale, 2015, 7(1), 38.
16 Zhu W, Chen Z, Pan Y, et al. Advanced Materials, 2019, 31(38), 1800426.
17 Gan X M, Xu G T, Zhang G Q, et al. Comprehensive Utilization of Resources in China, 2003(9), 39 (in Chinese).
甘晓明, 徐高田, 张国卿, 等. 中国资源综合利用, 2003(9), 39.
18 Zhang H, Luo Y, Cui P L, et al. Chemical Industry and Engineering Progress, 2020, 39(5), 9 (in Chinese).
张虹, 罗莹, 崔朋蕾, 等. 化工进展, 2020, 39(5), 9.
19 Li R X, Wang J J. Chemical Industry and Engineering Progress, 2002(1), 43 (in Chinese).
李汝雄, 王建基. 化工进展, 2002(1), 43.
20 Vijayaram S, Razafindralambo H, Sun Y Z, et al. Biological Trace Element Research, 2024, 202(1), 360.
21 Liu Y, Liu C H, Debnath T, et al. Nature Communications, Nature Publishing Group, 2023, 14(1), 1.
22 Xu J, Ma J, Peng Y, et al. Chinese Chemical Letters, 2023, 34(4), 107527.
23 Lyu F X, Liu X P, Chen X. Science Focus, 2019, 14(6), 10 (in Chinese).
吕凤先, 刘小平, 陈欣. 科学观察, 2019, 14(6), 10.
24 Zare I, Chevrier D M, Cifuentes-Rius A, et al. Materials Today, 2023, 66, 159.
25 Zeng Q F, Deng Y H, Zhang Y W, et al. Journal of Xiangtan University, 2020, 42(4), 8 (in Chinese).
曾庆丰, 邓永和, 张宇文, 等. 湘潭大学学报(自然科学版), 2020, 42(4), 8.
26 Wang D, Tejerina B, Lagzi I, et al. ACS Nano, 2011, 5(1), 530.
27 Blanchard L A, Brennecke J F. Industrial & Engineering Chemistry Research, 2001, 40(11), 2550.
28 Zhang H, Luo Y, Cui P L, et al. Chemical Industry and Engineering Progress, 2020, 39(5), 1803 (in Chinese).
张虹, 罗莹, 崔朋蕾, 等. 化工进展, 2020, 39(5), 1803.
29 Kim K S, Demberelnyamba D, Lee H. Langmuir, 2004, 20(3), 556.
30 Patil V, Mahajan S, Kulkarni M, et al. Chemosphere, 2020, 243, 125302.
31 Samari F, Dorostkar S. Journal of the Iranian Chemical Society, 2016, 13(4), 689.
32 Farjadian F, Akbarizadeh A R, Tayebi L. Heliyon, 2020, 6, 8.
33 Maneewattanapinyo P, Pichayakorn W, Monton C, et al. Pharmaceutics, 2023, 15(4), 1098.
34 Bernardi F, Scholten J D, Fecher G H, et al. Chemical Physics Letters, 2009, 479(1), 113.
35 Migowski P, Zanchet D, Machado G, et al. Physical Chemistry Chemical Physics, 2010, 12(25), 6826.
36 Vanecht E, Binnemans K, Patskovsky S, et al. Physical Chemistry Chemical Physics, 2012, 14(16), 5662.
37 Oncsik T, Desert A, Trefalt G, et al. Physical Chemistry Chemical Physics, 2016, 18(10), 7511.
38 Frolov A I, Kirchner K, Kirchner T, et al. Faraday Discussions, 2011, 154, 235.
39 Cheng P, Liu C, Yang Y, et al. Chemical Physics, 2015, 452, 1.
40 Gupta S K, Mao Y. Progress in Materials Science, 2021, 117, 100734.
41 Wang Y Q, Zhong Z X, Xing W H. CIESC Journal, 2021, 72(5), 2339 (in Chinese).
汪艳秋, 仲兆祥, 邢卫红. 化工学报, 2021, 72(5), 2339.
42 Zhao H L, You J H, Zhang Q G, et al. Chemistry Bulletin, 2009, 72(12), 1065 (in Chinese).
赵海丽, 尤景汉, 张庆国, 等. 化学通报, 2009, 72(12), 1065.
43 Azizi S, Shadjou N. Heliyon, 2021, 7(1), e05915.
44 Feng S, Yu H, Zhang X, et al. Sensors and Actuators B: Chemical, 2022, 359, 131529.
45 Shahvelayati A S, Sheshmani S, Siminghad M. Materials Chemistry and Physics, 2022, 278, 125442.
46 Sabbaghan M, Nadafan M. Optical Materials, 2023, 139, 113758.
47 Ding Y, Wang P, Wang Z, et al. Polymer Engineering & Science, 2011, 51(8), 1519.
48 Luo R M. Protein adsorption and glycosylated functionalization of muti-walled-carbon nanotubes. Master's Thesis, Beijing Polytechnic University, China, 2011 (in Chinese).
罗蓉梅. 多壁碳纳米管的糖基化修饰及蛋白质吸附研究. 硕士学位论文, 北京化工大学, 2011.
49 Yang L B. Preparation and separation research of organic/inorganic hybrid thin-film composite membrane. Master's Thesis, Beijing Polytechnic University, China, 2019 (in Chinese).
杨丽彬. 有机/无机杂化薄层复合膜的制备及分离性能研究. 硕士学位论文, 北京工业大学, 2019.
50 Zhao Z G, Liu X W, Wang X, et al. Optics & Precision Engineering, 2011, 19(1), 118 (in Chinese).
赵振刚, 刘晓为, 王鑫, 等. 光学精密工程, 2011, 19(1), 118.
51 Miyako E, Itoh T, Nara Y, et al. Chemistry-A European Journal, 2009, 15(31), 7520.
52 Fukushima T, Aida T. Chemistry-A European Journal, 2007, 13(18), 5048.
53 Song S C, Li H, Yang J T, et al. Journal of Functional Materials, 2018, 49(1), 1033 (in Chinese).
宋时传, 李海, 杨锦涛, 等. 功能材料, 2018, 49(1), 1033.
54 Xu Q, Zhang W. E-Polymers, 2021, 21(1), 166.
55 Liu Z, Yin S, Hu Q, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127894.
56 Therattil J, Anil K S, Pothan L A, et al. Functional Composites and Structures, 2020, 2(3), 035003.
57 Wang J, Chu H, Li Y, et al. ACS Nano, 2008, 2, 2540.
58 Ribeiro R S A, Pohlmann B C, Calado V, et al. Engineering in Life Sciences, 2019, 19(4), 279.
59 Charreau H, Cavallo E, Foresti M L. Carbohydrate Polymers, 2020, 237, 116039.
60 Ahankari S S, Subhedar A R, Bhadauria S S, et al. Carbohydrate Polymers, 2021, 255, 117479.
61 Chinmay Z, Balasubramanian K. European Polymer Journal, 2020, 133, 109758.
62 Moohan J, Stewart S A, Espinosa E, et al. Applied Sciences, 2020, 10(1), 65.
63 Karimian A, Parsian H, Majidinia M, et al. International Journal of Biolo-gical Macromolecules, 2019, 133, 850.
64 Bacakova L, Pajorova J, Bacakova M, et al. Nanomaterials, 2019, 9(2), 164.
65 Trache D, Tarchoun A F, Derradji M, et al. Frontiers in Chemistry, 2020, 8.
66 Khalil H P S A, Jummaat F, Yahya E B, et al. Polymers, 2020, 12(9), 2043.
67 Lengowski E C, Bonfatti J E A, Kumode M M N, et al. Sustainable polymer composites and nanocomposites, Springer International Publishing, Cham, 2019, pp. 1001.
68 Nemoto J, Saito T, Isogai A. ACS Applied Materials & Interfaces, 2015, 7(35), 19809.
69 Putro J N, Kurniawan A, Ismadji S, et al. Environmental Nanotechnology, Monitoring & Management, 2017, 8, 134.
70 Zhou Y, Khan T M, Liu J C, et al. Organic Electronics, 2014, 15(3), 661.
71 Mohammed N, Grishkewich N, Berry R M, et al. Cellulose, 2015, 22(6), 3725.
72 Lasrado D, Ahankari S, Kar K. Journal of Applied Polymer Science, 2020, 137(27), 48959.
73 Phanthong P, Reubroycharoen P, Hao X, et al. Carbon Resources Conversion, 2018, 1(1), 32.
74 Abitbol T, Rivkin A, Cao Y, et al. Current Opinion in Biotechnology, 2016, 39, 76.
75 Heise K, Kontturi E, Allahverdiyeva Y, et al. Advanced Materials (Deerfield Beach, Fla. ), 2021, 33(3), e2004349.
76 Babicka M, Woźniak M, Szentner K, et al. Materials, 2021, 14(12), 3264.
77 Haron G A S, Mahmood H, Noh H B, et al. Journal of Applied Polymer Science, 2024, 141(2), e54780.
78 Fuster M G, Moulefera I, Muñoz M N, et al. Polymers, 2023, 15(2), 382.
79 Tayyab Z, Safi S Z, Rahim A, et al. Journal of Biomaterials Science:Polymer Edition, 2019, 30(9), 785.
80 Chen B Q, Lin C X, Liu Y F, et al. CIESC Journal, 2020, 71(3), 903 (in Chinese).
陈蓓秋, 林春香, 刘以凡, 等. 化工学报, 2020, 71(3), 903.
[1] 苏友义, 张明, 陶雯艳, 杨萍萍, 郭星辰, 邓徐, 谢佳乐. 硝酸盐催化还原合成氨研究进展[J]. 材料导报, 2025, 39(7): 24040024-12.
[2] 李艺, 刘敬肖, 史非, 杨大毅, 田紫薇, 王美玉, 万佳翔, 陈超凡, 吕振杰. 基于草酸热还原制备CsxWO3用于高效近红外屏蔽薄膜研究[J]. 材料导报, 2025, 39(7): 23060135-8.
[3] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[4] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[5] 吴焱, 乔英杰, 白成英, 王晓东, 张晓红. 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 23120194-11.
[6] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[7] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[8] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[9] 续丽辉, 朱兴忠, 徐娟, 阚彩侠. 金纳米星的合成与应用[J]. 材料导报, 2025, 39(6): 23090180-15.
[10] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[11] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[12] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[13] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[14] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[15] 唐晓龙, 温佳俊, 刘媛媛, 王成志, 罗宁, 段二红, 周远松, 易红宏, 高凤雨. CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究[J]. 材料导报, 2025, 39(5): 24020126-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed