Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24020085-7    https://doi.org/10.11896/cldb.24020085
  无机非金属及其复合材料 |
恒湿与变湿养护条件下MgO膨胀剂对水泥砂浆膨胀性能的影响分析
刘奎生1, 崔勇2,3, 于晓1, 栾海涛1, 宋奇达1, 陈佳俊1, 马子翔1, 房奎圳3,*
1 北京城建集团有限责任公司, 北京 100088
2 中煤科工开采研究院有限公司, 北京 100013
3 清华大学土木工程系, 北京 100084
Analysis of the Effect of MgO Expansive Agent on the Expansion Performance of Cement Mortar Under Constant and Variable Humidity Curing Conditions
LIU Kuisheng1, CUI Yong2,3, YU Xiao1, LUAN Haitao1, SONG Qida1, CHEN Jiajun1, MA Zixiang1, FANG Kuizhen3,*
1 Beijing Urban Construction Group Co.,Ltd., Beijing 100088, China
2 CCTEG Coal Mining Research Institute, Beijing 100013, China
3 School of Civil Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 37693KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料的裂纹控制和性能优化一直是建筑工程领域追求的关键目标。传统的补偿收缩方法虽然在一定程度上有效,但仍存在成本高、应用受限等问题。近年来,MgO膨胀剂因其低成本和高效率的优势而受到广泛关注。然而,对MgO在不同湿度条件下的性能及其补偿机理的研究尚不充分。鉴于此,本工作专注于研究掺有MgO的水泥基材料在不同恒湿和变湿养护制度下的性能表现,通过测试和分析限制膨胀率、水化产物的矿物组成、形态和分布,以及MgO的水化程度,深入探讨了MgO在水泥基材料中的湿度敏感性。结果表明:含8%(质量分数)M型MgO的水泥砂浆的限制膨胀率随着养护湿度的升高而增加,样品膨胀和收缩的临界湿度为80%(相对湿度)。无论是在高湿度-慢循环还是在低湿度-快循环的变湿养护制度下,含8% M型MgO的水泥砂浆可以稳定存在。MgO在水泥净浆中的反应程度随着养护湿度升高而增加,在20%~45%。产物Mg(OH)2主要围绕MgO颗粒生成,呈凝胶态,随着湿度升高到100%,少量产物Mg(OH)2从凝胶状转化为棒状晶体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘奎生
崔勇
于晓
栾海涛
宋奇达
陈佳俊
马子翔
房奎圳
关键词:  水泥基材料  裂纹控制  MgO膨胀剂  湿度敏感性  变湿养护  补偿效果    
Abstract: Crack control and performance optimization in cement-based materials are pivotal goals in the field of civil engineering. While traditional shrinkage compensation methods are somewhat effective, they are limited by high costs and application constraints. Magnesium oxide (MgO) expansive agents have recently garnered widespread attention due to their cost-effectiveness and efficiency. However, research on the performance and compensation mechanisms of MgO under varying humidity conditions remains insufficient. This study focuses on the performance of cement-based materials incorporated with MgO under constant and variable moisture curing regimes. By examining the restrained expansion rate, mineral composition of hydration products, morphology, and distribution, as well as the hydration degree of MgO, this work delves into the humidity sensitivity of MgO in cement-based materials. Findings indicate that the restrained expansion rate of cement mortar containing 8% M-type MgO increases with the curing humidity, with a critical threshold humidity of 80% for expansion and shrinkage. The stability of the cement mortar with 8% M-type MgO is maintained under both high humidity-slow cycle and low humidity-fast cycle curing regimes. The reaction degree of the MgO expansive agent in cement paste increases with humidity, ranging from 20%—45%. The product Mg(OH)2 primarily forms around the MgO particles in a gel state, transforming into rod-shaped crystals as the humidity reaches 100%.
Key words:  cement-based material    crack control    MgO expansive agent    humidity sensitivity    variable moisture curing    compensation effect
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TU526  
基金资助: 国家自然科学基金面上项目(51778334)
通讯作者:  *房奎圳,博士,清华大学土工程系助理研究员。目前主要从事固废活化及建材资源化利用、低碳建材制备等相关领域研究。aloysea@mail.tsinghua.edu.cn   
作者简介:  刘奎生,现于清华大学攻读土木水利专业博士学位。主要研究特种混凝土在特殊工程中的应用。
引用本文:    
刘奎生, 崔勇, 于晓, 栾海涛, 宋奇达, 陈佳俊, 马子翔, 房奎圳. 恒湿与变湿养护条件下MgO膨胀剂对水泥砂浆膨胀性能的影响分析[J]. 材料导报, 2025, 39(7): 24020085-7.
LIU Kuisheng, CUI Yong, YU Xiao, LUAN Haitao, SONG Qida, CHEN Jiajun, MA Zixiang, FANG Kuizhen. Analysis of the Effect of MgO Expansive Agent on the Expansion Performance of Cement Mortar Under Constant and Variable Humidity Curing Conditions. Materials Reports, 2025, 39(7): 24020085-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020085  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24020085
1 Han C. China Building Decoration and Renovation, 2023(7), 110 (in Chinese).
韩程. 中国建筑装饰装修, 2023(7), 110.
2 Zhang P, Li Q F. Composites Part B:Engineering, 2013, 45(1), 1587.
3 Wu Z, Shi C, Khayat K H. Composites Part B:Engineering, 2019, 174, 107021.
4 Shen D, Liu C, Luo Y, et al. Cement and Concrete Composites, 2023, 138, 104948.
5 Torabian I F, Li W, Redaelli E. Cement and Concrete Composites, 2016, 74, 154.
6 Hawreen A, Bogas J A. Construction and Building Materials, 2019, 198, 70.
7 Zhang W, Zakaria M, Hama Y. Construction and Building Materials, 2013, 49, 500.
8 Maruyama I, Sasano H, Lin M. Cement and Concrete Research, 2016, 85, 82.
9 Liu J, An R, Jiang Z, et al. Construction and Building Materials, 2022, 321, 126333.
10 Tang C, Dong R, Tang Z, et al. Journal of Building Engineering, 2023, 71, 106446.
11 Maghfouri M, Alimohammadi V, Gupta R, et al. Case Studies in Construction Materials, 2022, 16, e00919.
12 De M L, Mannekens E, Van T K, et al. Construction and Building Materials, 2021, 286, 122948.
13 Abdelrazik A, Khayat K H. Construction and Building Materials, 2022, 314, 125610.
14 Chatterji S. Cement and Concrete Research, 1995, 25(1), 51.
15 Li H, Wang Y, Wang Y, et al. Construction and Building Materials, 2020, 250, 118723.
16 Yan P, Qin X. Cement and Concrete Research, 2001, 31(2), 335.
17 Yan P, Zheng F, Peng J, et al. Cement and Concrete Composites, 2004, 26(6), 687.
18 Mo L, Deng M, Wang A. Cement and Concrete Composites, 2012, 34(3), 377.
19 Mo L, Deng M, Tang M. Cement and Concrete Research, 2010, 40(3), 437.
20 Du Z J, Liu J P, Tian Q, et al. Concrete, 2010(1), 72 (in Chinese).
杜兆金, 刘加平, 田倩, 等. 混凝土, 2010(1), 72.
21 Mo L, Deng M, Tang M, et al. Cement and Concrete Research, 2014, 57, 1.
22 Yu F, Tang S, Deng C L, et al. Silicate Bulletin, 2020, 39 (10), 3221 (in Chinese).
于方, 唐诗, 邓春林, 等. 硅酸盐通报, 2020, 39(10), 3221.
23 Xu Q, Deng M, Mo L W. Concrete, 2013(9), 56 (in Chinese).
徐强, 邓敏, 莫立武. 混凝土, 2013(9), 56.
24 Zhang P, Dai Y Q, Gao K K, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1527 (in Chinese).
张鹏, 戴雨晴, 高凯凯, 等. 硅酸盐学报, 2019, 47(11), 1527.
25 Zhou L L, Wang S, Miao M, et al. Concrete and Cement Products, 2021(1), 34 (in Chinese).
周龙龙, 王舜, 苗苗, 等. 混凝土与水泥制品, 2021(1), 34.
26 Cao F Z, Yan P Y. Journal of the Chinese Ceramic Society, 2019, 47(2), 171.
曹丰泽, 阎培渝. 硅酸盐学报, 2019, 47(2), 171.
[1] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[2] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[3] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[4] 陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
[5] 张铖, 王振地, 史鑫宇, 李庭忠, 孙国星, 梁瑞. 超吸水树脂对高性能水泥基复合材料收缩和水化的影响[J]. 材料导报, 2024, 38(22): 23090194-7.
[6] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[7] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[8] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[9] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[10] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[11] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[12] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[13] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[14] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[15] 刘娟红, 邹敏, 李康, 谢永江. 碳酸盐环境下水泥基材料性能劣化与腐蚀破坏的研究进展[J]. 材料导报, 2023, 37(19): 22020132-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed