Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22020132-9    https://doi.org/10.11896/cldb.22020132
  无机非金属及其复合材料 |
碳酸盐环境下水泥基材料性能劣化与腐蚀破坏的研究进展
刘娟红1, 邹敏1, 李康2,3, 谢永江2,3,*
1 北京科技大学土木与资源工程学院,北京 100083
2 中国铁道科学研究院集团有限公司,高速铁路轨道技术国家重点实验室,北京 100081
3 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
Research Progress on Performance Degradation and Corrosion Failure of Cement-based Materials in Carbonate Environment
LIU Juanhong1, ZOU Min1, LI Kang2,3, XIE Yongjiang2,3,*
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory of High-speed Railway Track Technology, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
3 Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
下载:  全 文 ( PDF ) ( 20723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,土壤或水中的SO42-对水泥基材料的腐蚀已被人们所重视,但对碳酸盐环境下水泥基材料的的劣化与腐蚀破坏问题的关注程度较低。相关研究主要集中在碳酸水与水泥基材料中的水化产物氢氧化钙(Ca(OH)2)和水化硅酸钙凝胶(C-S-H)进一步反应生成可溶解物质,较少有对碳酸盐环境下其他破坏形式进行研究,例如碳硫硅钙石型破坏。通过综合评述近年来国内外水泥基材料中碳酸性侵蚀和碳硫硅钙石型破坏方面的研究成果,结合我国实际工程中碳酸盐环境下的混凝土劣化与腐蚀破坏案例进行分析,认为碳硫硅钙石型破坏通常发生在我国的西部、西南部地区的隧道初支部位,这可能与喷射混凝土中形成了大量钙矾石有关。最后提出了今后的研究方向,为避免碳酸盐环境下水泥基材料出现劣化与腐蚀破坏提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘娟红
邹敏
李康
谢永江
关键词:  水泥基材料  碳酸盐环境  侵蚀性CO2  碳硫硅钙石    
Abstract: At present, the corrosion of SO42- in soil or water on cement-based materials has been paid more attention, but the problem of performance degradation and corrosion failure in carbonate environment is less attention. Related studies mainly focus on the reaction of carbonated water with calcium hydroxide (Ca(OH)2) and calcium silicate hydrate gel (C-S-H) in cement-based materials to generate soluble substances, and few studies focus on other damage forms in carbonate environments, such as thaumasite. This paper reviews the domestic and foreign research results of carbonation erosion and thaumasite on cement-based materials in recent years. Based on the analysis of concrete degradation and corrosion failure in carbonate environment in actual engineering in China, it is considered that the thaumasite is usually found in the initial lining of tunnels in the west and southwest of China, which may be related to the formation of a large number of ettringite in shotcrete. Finally, the future research direction is proposed to provide a theoretical basis for avoiding the deterioration and corrosion failure of cement-based materials in carbo-nate environment.
Key words:  cement-based materials    carbonate environment    aggressive carbon dioxide    thaumasite
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TU503  
基金资助: 国家重点研发计划资助项目(2016YFC0600803);中国铁道科学研究院集团有限公司科研项目(2021YJ059)
通讯作者:  *谢永江,中国铁道科学研究院集团有限公司首席研究员,博士研究生导师。1988年武汉工业大学建筑材料专业硕士毕业后到铁道科学研究院工作至今。目前主要从事铁路工程材料、混凝土制品以及混凝土施工技术研究。发表论文200余篇,包括Cement and Concrete Composites、Construction and Building Materials、Journal of Central South University等。xieyj2004@sina.com   
作者简介:  刘娟红,北京科技大学土木与资源工程学院教授,博士研究生导师。长期从事现代混凝土技术教学与研究工作。主持国家自然科学重点基金、面上基金、国家重点基础研究发展计划、省部级科技计划项目和横向科研课题等60余项。获省部级科技进步一等奖4项、二等奖2项、三等奖6项。获国家发明专利20余项。在公开刊物上发表文章200余篇,被SCI、EI收录100余篇。出版学术专著《绿色高性能混凝土技术与工程应用》《活性粉末混凝土》《固体废弃物与低碳混凝土》等。主编教材《土木工程材料》。主要科研成果应用于北京市奥运工程地铁工程混凝土裂缝控制,广东省、浙江省道路桥梁工程,新疆、宁夏等自治区重点工程,大唐国际发电有限公司粉煤灰品质提升等方面。
引用本文:    
刘娟红, 邹敏, 李康, 谢永江. 碳酸盐环境下水泥基材料性能劣化与腐蚀破坏的研究进展[J]. 材料导报, 2023, 37(19): 22020132-9.
LIU Juanhong, ZOU Min, LI Kang, XIE Yongjiang. Research Progress on Performance Degradation and Corrosion Failure of Cement-based Materials in Carbonate Environment. Materials Reports, 2023, 37(19): 22020132-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020132  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22020132
1 Wu G H, Wang N A, Hu S X, et al. Physical geography (4th Ed.), Higher Education Press, China, 2008, pp. 275 (in Chinese).
伍光和, 王乃昂, 胡双熙, 等, 自然地理学(第四版), 高等教育出版社, 2008, pp. 275.
2 Yu C B, Wang H L. Chinese Journal of Underground Space and Engineering, 2020, 16(1), 227 (in Chinese).
许崇帮, 王华牢. 地下空间与工程学报, 2020, 16(1), 227.
3 Zhang C M, Cheng X W, Wang N. China Concrete, 2018(10), 84 (in Chinese).
张超明, 程小伟, 王宁. 混凝土世界, 2018(10), 84.
4 Jiang Q, Shi L, Liu J, et al. Tunnel Construction, 2016, 36(8), 918 (in Chinese).
姜骞, 石亮, 刘建忠, 等. 隧道建设, 2016, 36(8), 918.
5 Xing Z S, Deng M, Wang A G, et al. Journal of Building Materials, 2014, 17(1), 30 (in Chinese).
邢志水, 邓敏, 王爱国, 等. 建筑材料学报, 2014, 17(1), 30.
6 Santhanam M, Cohen M D, Olek J. Cement and Concrete Research, 2002, 32(6), 915.
7 Gao X L. Study on resistance to sulfate attack on cement based composite material containing mineral additive. Ph. D. Thesis, China building materials academy, China, 2005 (in Chinese).
高礼雄. 掺矿物掺合料水泥基材料的抗硫酸盐侵蚀性研究. 博士学位论文, 中国建筑材料科学研究院, 2005.
8 Gao R D, Zhao S B, Li Q B. Journal of Building Materials, 2009, 12(1), 41 (in Chinese).
高润东, 赵顺波, 李庆斌. 建筑材料学报, 2009, 12(1), 41.
9 Deng D H, Liu Z Q, Geert D S, et al. Journal of the Chinese Ceramic Society, 2012, 40(2), 175 (in Chinese).
邓德华, 刘赞群, Geert D S, 等. 硅酸盐学报, 2012, 40(2), 175.
10 Liu K W, Wang A G, Sun D S, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(12), 4014 (in Chinese).
刘开伟, 王爱国, 孙道胜, 等. 硅酸盐通报, 2016, 35(12), 4014.
11 Zhang X J, Zhang G Z, Sun D S, et al. Materials Reports, 2018, 32(7), 1174 (in Chinese).
张晓佳, 张高展, 孙道胜, 等. 材料导报, 2018, 32(7), 1174.
12 Editorial and Revision Committee of the ‘Water Conservancy Dictionary' of Hehai University, Dictionary of water resources, Shanghai Lexicographical Press, 2015, pp (in Chinese).
编辑修订委员会编河海大学水利大辞典, 水利大辞典, 上海辞书出版社, 2015, pp.
13 Xu J H, Xie Y L, Li K Q, et al. Geology (5th edition), Metallurgical industry press, 2015, pp. 8 (in Chinese).
徐九华, 谢玉玲, 李克庆, 等, 地质学(第5版). 冶金工业出版社, 2015, pp. 8.
14 Guo G F. Study on Corrosion characters of cement-based materials in aggressive CO2 environment. Master' Thesis, South China University of Technology, China, 2012 (in Chinese).
郭高峰. 侵蚀性CO2对水泥基材料的腐蚀特性研究. 硕士学位论文, 华南理工大学, 2012.
15 H. H, Zhou J. Water Power, 1957(17), 36 (in Chinese).
Н. И. 基利欽柯 周. 水力发电, 1957(17), 36.
16 Peng H X, Li S J, Ma X H. Advances in Water Science, 1995(2), 150 (in Chinese).
彭汉兴, 李淑杰, 马晓辉. 水科学进展, 1995(2), 150.
17 Zhang J S, Liu L Z. Engineering Journal of Wuhan University, 2003(1), 29 (in Chinese).
张劲松,刘利珍. 武汉大学学报(工学版), 2003(1), 29.
18 Yao X. Drilling Fluid & Completion Fluid, 1998(1), 9 (in Chinese).
姚晓. 钻井液与完井液, 1998(1), 9.
19 Castellote M, Andrade C, Turrillas X, et al. Cement and Concrete Research, 2008, 38(12), 1365.
20 Rostami V, Shao Y X, Boyd A J. Construction and Building Materials, 2011, 25(8), 3345.
21 Dong Y, Yang H Q, Wang L. Journal of Building Materials, 2014, 17(5), 868 (in Chinese).
董芸, 杨华全, 王磊. 建筑材料学报, 2014, 17(5), 868.
22 Yin S H, Yang Y F, Zhang T S, et al. Construction and Building Materials, 2015, 91, 39.
23 Zhou H, Zheng J, Hu D W, et al. Rock and Soil Mechanics, 2019, 40(7), 2469 (in Chinese).
周辉, 郑俊, 胡大伟, 等. 岩土力学, 2019, 40(7), 2469.
24 Chen J J, Thomas J J, Jennings H A. Cement and Concrete Research, 2006, 36(5), 801.
25 Liu J H, Bian L B, He W, et al. Journal of China Coal Society, 2015, 40(3), 528 (in Chinese).
刘娟红, 卞立波, 何伟, 等. 煤炭学报, 2015, 40(3), 528.
26 Wang Y. Cooperative corrosion action law of oilwell cement by SO42- and HCO3-. Master's Thesis, University of Daqing petroleum Institute, China, 2009 (in Chinese).
王宇. SO42-和HCO3-共同作用下油井水泥的腐蚀规律. 硕士学位论文, 大庆石油学院, 2009.
27 Wang X. Multi factor model and durability analysis of concrete carbonation depth in groundwater environment. Master's Thesis, Guangxi university, China, 2016 (in Chinese).
万翔. 地下水环境下混凝土碳化深度多因素模型及耐久性分析. 硕士学位论文, 广西大学, 2016.
28 Zhao Z, Xing F, Zeng L, et al. Journal of the Chinese Ceramic Society, 2013, 41(2), 224 (in Chinese).
赵卓, 邢锋, 曾力, 等. 硅酸盐学报, 2013, 41(2), 224.
29 Wang J. Experiment research on concrete durability affected by aggressive carbon dioxide in groundwater environment, Master's Thesis, Zhengzhou University, China, 2012 (in Chinese).
王健. 侵蚀性二氧化碳作用下的混凝土耐久性试验研究. 硕士学位论文, 郑州大学, 2012.
30 Yang Y F. Research on key factors of concrete resistance to carbonate water erosion in Guangzhou metro. Master's Thesis, South China University of Technology, China, 2016 (in Chinese).
杨永风. 广州地铁混凝土抗碳酸水侵蚀的关键因素研究. 硕士学位论文, 华南理工大学, 2016.
31 Van Gerven T, Cornelis G, Vandoren E, et al. Waste Management, 2007, 27(7), 977.
32 Zheng J. Study on the deterioration mechanism and long term stability of tunnel lining in carbonic water environment. Ph.D. Thesis, University of Chinese Academy of Sciences, China, 2018 (in Chinese).
郑俊. 碳酸性水环境下隧洞衬砌劣化机理及长期稳定性研究. 博士学位论文, 中国科学院大学, 2018.
33 Sheng J C, Jia C L, Zhang Y, et al. Journal of Hydroelectric Engineering, 2013, 32(6), 216 (in Chinese).
盛金昌, 贾春兰, 张羽, 等. 水力发电学报, 2013, 32(6), 216.
34 Andac M, Glasser F P. Cement and Concrete Research, 1999, 29(2), 179.
35 Bao H, Xu G, Wang Q, et al. Construction and Building Materials, 2020, 243, 118233.
36 Zhou H, Zheng J, Hu D W, et al. Chemical Industry and Engineering Progress, 2018, 37(12), 4791 (in Chinese).
周辉, 郑俊, 胡大伟, 等. 化工进展, 2018, 37(12), 4791.
37 Adeoye J T, Beversluis C, Murphy A, et al. International Journal of Greenhouse Gas Control, 2019, 83, 282.
38 Omosebi O, Maheshwari H, Ahmed R, et al. Journal of Natural Gas Science and Engineering, 2015, 26, 1344.
39 Zhang X, Zheng Y, Guo Z, et al. Journal of Natural Gas Science and Engineering, 2021, 95, 104179.
40 Peng Q, Gao D S. Journal of Ground Improvement, 2021, 3(4), 342 (in Chinese).
彭琦, 高大水. 地基处理, 2021, 3(4), 342.
41 Hu M Y, Tang M S. Concrete, 2001(6), 3 (in Chinese).
胡明玉, 唐明述. 混凝土, 2001(6), 3.
42 Hobbs D W, Taylor M G. Cement and Concrete Research, 2000, 30(4), 529.
43 Loudon N. Cement & Concrete Composites, 2003, 25(8), 1051.
44 Ma B G, Gao X J, He Z M, et al. Journal of the Chinese Ceramic Society, 2004(10), 1219 (in Chinese).
马保国, 高小建, 何忠茂, 等. 硅酸盐学报, 2004(10), 1219.
45 Hu M Y, Long F M, Tang M S. Cement and Concrete Research, 2006, 36(10), 2006.
46 Crammond N. Cement & Concrete Composites, 2002, 24(3-4), 393.
47 Hu M Y, Tang M S. Concrete, 2004(6), 17 (in Chinese).
胡明玉, 唐明述. 混凝土, 2004(6), 17.
48 Gaze M E, Crammond N J. Cement & Concrete Composites, 2000, 22(3), 209.
49 Zhou Y. A research on the formation, evolution and regulation mechanism of thaumsite in cement-based materials. Ph. D. Thesis, Wuhan University of Technology, China, 2018 (in Chinese).
周阳. 水泥基材料碳硫硅钙石的形成演变与调控机制研究. 博士学位论文, 武汉理工大学, 2018.
50 Crammond N J. Cement & Concrete Composites, 2003, 25(8), 809.
51 Aguilera J, Varela M, Vazquez T. Cement and Concrete Research, 2001, 31(8), 1163.
52 Gao L X, Du X G, Kong L J. Journal of the Chinese Ceramic Society, 2012, 40(5), 711 (in Chinese).
高礼雄, 杜雪刚, 孔丽娟. 硅酸盐学报, 2012, 40(5), 711.
53 Xiao J, Meng Q Y, Ma B G, et al. Journal of Building Materials, 2015, 18(2), 263 (in Chinese).
肖佳, 孟庆业, 马保国, 等. 建筑材料学报, 2015, 18(2), 263.
54 Bellmann F. Advances in Cement Research, 2007, 19(4), 139.
55 Torres S M, Kirk C A, Lynsdale C J, et al. Cement and Concrete Research, 2004, 34(8), 1297. 1988,
56 Bensted J. Ⅱ Cemento, 1988, 85(1), 3.
57 Purnell P, Francis O J, Page C L. Cement & Concrete Composites, 2003, 25(8), 857.
58 Barnett S J, Macphee D E. Concrete Science and Engineering, 2001, 3,209.
59 Zhang B L, Ma B G, Wang Y B. China Concrete and Cement Products, 2015(10), 20 (in Chinese).
张昺榴, 马保国, 王迎斌. 混凝土与水泥制品, 2015( 10), 20.
60 Zheng Y J. Influences of different aluminates on thaumasite sulfate attack in cement materials. Master's Thesis, Chongqing university, China, 2017 (in Chinese).
郑雨佳. 胶凝材料中铝相对碳硫硅钙石型硫酸盐侵蚀的影响. 硕士学位论文, 重庆大学, 2017.
61 Li X G, He C, Luo Z T, et al. Journal of the Chinese Ceramic Society, 2013, 41(11), 1546 (in Chinese).
李相国, 何超, 罗忠涛, 等. 硅酸盐学报, 2013, 41(11), 1546.
62 Jiang D B, Li X G, Jiang W G, et al. Construction and Building Mate-rials, 2020, 259.
63 Wang Z J, Guo C C, Song Y M, et al. Journal of the Chinese Ceramic Society, 2016, 44(2), 292 (in Chinese).
王志娟, 郭川川, 宋远明, 等. 硅酸盐学报, 2016, 44(2), 292.
64 Kohler S, Heinz D, Urbonas L. Cement and Concrete Research, 2006, 36(4), 697.
65 Meng Q Y, Investigation on thaumasite formation in cementitious mate-rials. Master's Thesis, Central South University, China, 2014 (in Chinese).
孟庆业. 水泥基胶凝材料中碳硫硅钙石的形成研究. 硕士学位论文, 中南大学, 2014.
66 Liu J H, Song S M, Gao M. Journal of Building Materials, 2017, 20(6), 846 (in Chinese).
刘娟红, 宋少民, 高萌. 建筑材料学报, 2017, 20(6), 846.
67 Ma B G, Luo Z T, Gao X J, et al. Journal of the Chinese Ceramic Society, 2006(5), 622 (in Chinese).
马保国, 罗忠涛, 高小建, 等. 硅酸盐学报, 2006(5), 622.
68 Gao M. Study on the deterioration mechanism of cement-based rich-water filling material in corrosive environment. Ph. D. Thesis, University of science and technology of Beijing, China, 2017 (in Chinese).
高萌. 腐蚀环境中水泥基富水充填材料劣化机理研究. 博士学位论文, 北京科技大学, 2017.
69 Gao M, Liu J H, Wu A X. Chinese Journal of Engineering, 2015, 37(8), 976 (in Chinese).
高萌, 刘娟红, 吴爱祥. 工程科学学报, 2015, 37(8), 976.
70 Bellmann F, Stark J. Cement and Concrete Research, 2007, 37(8), 1215.
71 Bellmann F, Stark J. Cement and Concrete Research, 2008, 38(10), 1154.
72 Ma B G, Gao X J, Luo Z T. Journal of Materials Science and Enginee-ring, 2006(2), 230 (in Chinese).
马保国, 高小建, 罗忠涛. 材料科学与工程学报, 2006(2), 230.
73 Fu H B. Research on resistance erosion properties and mechanism of TSA towards cement-based materials. Master's Thesis, Wuhan University of Technology, China, 2014 (in Chinese).
付浩兵. 水泥基材料抗TSA侵蚀性能及机理的研究. 硕士, 武汉理工大学, 2014.
74 Mulenga D M, Stark J, Nobst P. Cement & Concrete Composites, 2003, 25(8), 907.
75 Li C C. Research on deterioration and preventive measures of thaumasite form of sulfate attack in cement-based materials. Ph. D. Thesis, China National Academy of Building Materials Science and Technology, China, 2011 (in Chinese).
李长成. 水泥基材料碳硫硅钙石型硫酸盐侵蚀破坏及预防措施研究. 博士学位论文, 中国建筑材料科学研究总院, 2011.
76 Zhang J. Research on influence factors of thaumasite form of sulfate attack towards cement-based materials. Master's Thesis, Chongqing university, China, 2009 (in Chinese).
张靖. 水泥基材料碳硫硅钙石型硫酸盐侵蚀影响因素研究. 硕士学位论文, 重庆大学, 2009.
77 Lan M, Wang Y B, He X Y, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(8), 2570 (in Chinese).
兰蒙, 王迎斌, 贺行洋, 等. 硅酸盐通报, 2017, 36(8), 2570.
78 Wang Y B. Research on mechanism and prevention of thaumasite form of sulfate attack. Ph. D. Thesis, Wuhan University of Technology, China, 2015.
王迎斌. 碳硫硅钙石的形成机理及防治技术的研究. 博士学位论文, 武汉理工大学, 2015.
79 Qu Y N, Zhong X H, Wang J H, et al. China Concrete and Cement Products, 2020(2), 8 (in Chinese).
渠亚男, 仲新华, 王家赫, 等. 混凝土与水泥制品, 2020(2), 8.
80 Wang J H, Xie Y J, Zhong X H, et al. Railway Engineering, 2021, 61(1), 130 (in Chinese).
王家赫, 谢永江, 仲新华, 等. 铁道建筑, 2021, 61(1), 130.
[1] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[2] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[3] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[4] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[5] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[6] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[7] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[8] 徐鹏, 张轩翰, 明高林, 施诗. 纳米改性水泥基材料功能化研究进展[J]. 材料导报, 2023, 37(16): 21080265-10.
[9] 朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
[10] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[11] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[12] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[13] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[14] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[15] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed