Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21060180-11    https://doi.org/10.11896/cldb.21060180
  无机非金属及其复合材料 |
碱矿渣水泥基材料的干燥收缩及减缩技术研究进展
徐阳晨, 邢国华*, 赵嘉华
长安大学建筑工程学院,西安 710061
Research Progress of Drying Shrinkage of Alkali Activated Slag Cement Based Materials and Corresponding Counter-techniques
XU Yangchen, XING Guohua*, ZHAO Jiahua
School of Civil Engineering, Chang’an University, Xi’an 710061, China
下载:  全 文 ( PDF ) ( 5776KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱矿渣(AAS)水泥是以矿渣为原料在激发剂作用下形成的具有高强、高耐久性、环保的胶凝材料,被认为是普通硅酸盐水泥的潜在替代品,但其较大的干燥收缩是制约其应用和推广的主要原因。如何通过合理有效的减缩技术将AAS水泥基材料的干燥收缩控制在合理范围内,是实际工程应用中需要解决的问题。本文系统地回顾了国内外学者关于减轻AAS水泥基材料干燥收缩技术的研究现状。然后,综述了纤维,外加剂,激发剂种类、掺量和模数,矿物掺合料,养护条件和内养护等对AAS水泥基材料干燥收缩的减缩效果。最后,提出了目前对AAS水泥基材料减缩研究中存在的不足以及后续的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐阳晨
邢国华
赵嘉华
关键词:  矿渣  碱矿渣水泥基材料  干燥收缩  减缩技术    
Abstract: Alkali-activated slag (AAS) cement is environment-friendly cementitious material with high strength and high durability made of slag activated by alkali activators. It is considered to be a potential substitute for ordinary portland cement, but its wider utilization is limited by significant drying shrinkage. How to control the drying shrinkage of AAS cement-based materials within a reasonable range through reasonable and effective shrinkage reduction approaches is a problem to be solved in practical engineering application. In this paper, the research status of reducing the drying shrinkage of AAS cement-based materials at home and abroad are systematically reviewed. And the shrinkage reduction effects of fibers, admixtures, activator types, dosage and modulus, mineral admixtures, curing conditions and internal curing on the drying shrinkage of AAS cement-based materials are summarized. Finally, the limitations in the shrinkage reduction research of AAS cement-based materials and suggestions as well as perspectives for the future are provided.
Key words:  slag    alkali slag cement based material    drying shrinkage    drying shrinkage reducing approach
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TU526  
基金资助: 陕西省杰出青年科学基金(2021JC-037);中央高校基础科学研究专项基金(300102288302)
通讯作者:  * 邢国华,教授、博士研究生导师。2010年于长安大学结构工程专业博士毕业。陕西省杰出青年科学基金、“西部基础设施结构灾变机理与控制”陕西省高等院校青年创新团队带头人。先后负责国家自然科学基金4项、陕西省自然科学基金等纵向科研项目16项。发表论文110余篇,出版学术专著1部。ghxing@chd.edu.cn   
作者简介:  徐阳晨,2020年6月毕业于安徽理工大学,获得工学硕士学位。现为长安大学建筑工程学院博士研究生。目前主要研究领域为新型混凝土材料、钢筋混凝土结构损伤控制。
引用本文:    
徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
XU Yangchen, XING Guohua, ZHAO Jiahua. Research Progress of Drying Shrinkage of Alkali Activated Slag Cement Based Materials and Corresponding Counter-techniques. Materials Reports, 2023, 37(7): 21060180-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060180  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21060180
1 Liu Z Y. China Building Materials, 2021(2), 84 (in Chinese).
刘作毅. 中国建材, 2021(2), 84.
2 Zeng J, Yan W G, He H, et al. Materials Reports, 2013, 27(1), 321 (in Chinese).
曾杰, 颜伟国, 赫赫, 等. 材料导报, 2013, 27(1), 321.
3 Gu Y M, Fang Y H. Journal of the Chinese Ceramic Society, 2012, 40(1), 76 (in Chinese).
顾亚敏, 方永浩. 硅酸盐学报, 2012, 40(1), 76.
4 Wang Y G, Geng Y F, Zhang H M, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(5), 104 (in Chinese).
王玉广, 耿颜飞, 张海明, 等. 硅酸盐通报, 2020, 39(5), 104.
5 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2002, 32(2), 211.
6 Özbay E, Erdemir M, Durmuş H. Construction and Building Materials, 2016, 105, 423.
7 Xiao L G, Qi F M. Journal of Jilin Jianzhu University, 2018, 35(2), 30 (in Chinese).
肖力光, 齐凤梅. 吉林建筑大学学报, 2018, 35(2), 30.
8 Sakulich A R, Miller S, Barsoum M W. Journal of the American Ceramic Society, 2010, 93(6), 1741.
9 Wang P J, Chen H M, Chen P Y, et al. Materials, 2020, 13(19), 4318.
10 Mohamed O A. Materials, 2019, 12(8), 1198.
11 Jiang M H, Chen X J, Rajabipour F, et al. Journal of Infrastructure Systems, 2014, 20(4), 04014020.
12 Ye H L, Radlińska A. Cement and Concrete Research, 2016, 88, 126.
13 Puertas F, González-Fonteboa B, González-Fonteboa I, et al. Cement and Concrete Composites, 2018, 85, 22.
14 Shen W G, Wang Y H, Zhang T, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(1), 121.
15 Atiş C D, Bilim C, Çelik Ö, et al. Construction and Building Materials, 2009, 23(1), 548.
16 Palacios M, Puertas F. Cement and Concrete Research, 2007, 37(5), 691.
17 Sandanayake M, Gunasekara C, Law D, et al. Journal of Cleaner Production, 2018, 304, 399.
18 Taghvayi H, Behfarnia K, Khalili M. Journal of Advanced Concrete Technology, 2018, 16(7), 293.
19 Nanayakkara O, Gunasekara C, Sandanayake M, et al. Construction and Building Materials, 2021, 271, 121512.
20 Huang D, Gao P F, Liu G Y, et al. Concrete, 2021(2), 77 (in Chinese).
黄达, 高鹏飞, 刘光焰, 等. 混凝土, 2021(2), 77.
21 Collins F G, Sanjayan J G. Cement and Concrete Research, 1999, 29(3), 455.
22 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2000, 30(9), 1367.
23 Aydin S, Baradan B. Materials and Design, 2012, 35, 374.
24 Cartwright C, Rajabipour F, Radlinska A. Journal of Materials in Civil Engineering, 2015, 27(7), B4014007.
25 Ye H L, Cartwright C, Rajabipour F, et al. Cement and Concrete Composites, 2017, 76, 13.
26 Akturk B, Kizilkanat A B. Construction and Building Materials, 2020, 243, 118260.
27 Peng X M, Chen Y. Fly Ash Comprehensive Utilization, 2017(1), 60 (in Chinese).
彭香明, 陈瑜. 粉煤灰综合利用, 2017(1), 60.
28 He H N, Dai X Y. Journal of Architecture and Civil Engineering, 2020, 37(3), 73 (in Chinese).
何化南, 代向阳. 建筑科学与工程学报, 2020, 37(3), 73.
29 Balogh A. Concrete Construction, 1996, 41(7), 546.
30 Yang J, Wang Q, Zhou Y Q. Advances in Materials Science and Engineering, 2017, 2017, 1.
31 Han M Y, Lytton R L. Journal of Materials in Civil Engineering, 1995, 7(4), 204.
32 Qu Z Y, Yu Q L, Ji Y D, et al. Cement and Concrete Research, 2020, 138, 106234.
33 Collins F, Sanjayan J G. Cement and Concrete Research, 2000, 30(9), 1401.
34 Chen K, Yang C H, Pan Q, et al. Journal of Chongqing University, 2012, 35(5), 64 (in Chinese).
陈科, 杨长辉, 潘群, 等. 重庆大学学报, 2012, 35(5), 64.
35 Wang W C, Rao F C, Tang H J, et al. Architecture Technology, 2013, 44(2), 161 (in Chinese).
王维才, 饶福才, 唐和俊, 等. 建筑技术, 2013, 44(2), 161.
36 Lu G W, Yu Z B, Fu B. Chongqing Architecture, 2013, 12(5), 49 (in Chinese).
卢光位, 余政兵, 傅博. 重庆建筑, 2013, 12(5), 49.
37 Thomas R J, Lezama D, Peethamparan S. Cement and Concrete Research, 2017, 91, 13.
38 El-Yamany H E, El-Salamawy M A, El-Assal N T. Construction and Building Materials, 2018, 191, 32.
39 Su Y, Wang Z H, Wang Y B, et al. Journal of Wuhan University of Technology, 2015, 37(11), 32 (in Chinese).
苏英, 王志虎, 王迎斌, 等. 武汉理工大学学报, 2015, 37(11), 32.
40 Chen W W, Xie Y, Li B X, et al. Construction and Building Materials, 2021, 299, 124002.
41 Vilaplana J L, Baeza F J, Galao O, et al. Construction and Building Materials, 2016, 116, 63.
42 Brakat A, Zhang Y M. Advances in Cement Research, 2019, 31(2), 47.
43 Nguyen C V, Mangat P S. Construction and Building Materials, 2020, 261(2), 120536.
44 Puertas F, Gil-Maroto A, Palacios M, et al. Materiales De Construcción, 2006, 56(283), 79.
45 Miao G F. Shanxi Architecture, 2020, 46(12), 1 (in Chinese).
缪贵福. 山西建筑, 2020, 46(12), 1.
46 Xu Y C, Chen H M, Wang P J. Advances in Civil Engineering, 2020, 2020, 1.
47 Yang Z H, Guo J H, Gao C Y. Bulletin of the Chinese Ceramic Society, 2019, 38(2), 436 (in Chinese).
杨正宏, 郭君华, 高春勇. 硅酸盐通报, 2019, 38(2), 436.
48 Ranjbar N, Mehrali M, Behnia A, et al. PloS One, 2016, 11(1), e0147546.
49 Rashad A M. Materials Science and Technology, 2019, 35(2), 127.
50 Mora-Ruacho J, Gettu R, Aguado A. Cement and Concrete Research, 2009, 39(3), 141.
51 Collepardi M, Borsoi A, Collepardi S, et al. Cement and Concrete Composites, 2005, 27, 704.
52 Hu X, Shi C J, Zhang Z H, et al. Journal of the American Ceramic Society, 2019, 102(8), 4963.
53 Kalina L, Jr V B, Bartoníčková E, et al. Construction and Building Materials, 2020, 248, 118620.
54 Wang G H, Yu Z D. Journal of Civil, Architectural and Environmental Engineering, 2012, 34(S2), 115 (in Chinese).
汪国华, 于泽东. 土木建筑与环境工程, 2012, 34(S2), 115.
55 Ye H L, Fu C Q, Lei A. Construction and Building Materials, 2020, 245, 118478.
56 Zhang L F, Fu B H, Song S S, et al. China Concrete and Cement Pro-ducts, 2020, 293(9), 96 (in Chinese).
张兰芳, 付彬鸿, 宋松松, 等. 混凝土与水泥制品, 2020, 293(9), 96.
57 Gong J Q, Luo H K, Zhang Y, et al. Materials Reports, 2021, 35(8), 8042. (in Chinese).
龚建清, 罗鸿魁, 张阳, 等. 材料导报, 2021, 35(8), 8042.
58 Mastali M, Kinnunen P, Dalvand A, et al. Construction and Building Materials, 2018, 190, 533.
59 Chen P Y, Wang P J, Wang L, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(8), 260 (in Chinese).
陈佩圆, 王鹏举, 王亮, 等. 硅酸盐通报, 2019, 38(8), 260.
60 Jia Z J, Yang Y Y, Yang L Y, et al. Construction and Building Materials, 2018, 158, 198.
61 Yuan X H, Chen W, Lu Z A, et al. Construction and Building Materials, 2014, 66, 422.
62 Ma P F, Li S, Cheng B J, et al. Inorganic Chemicals Industry, 2020, 52(10), 145 (in Chinese).
麻鹏飞, 李爽, 程宝军, 等. 无机盐工业, 2020, 52(10), 145.
63 Yang L Y, Jia Z J, Zhang Y M, et al. Cement and Concrete Composites, 2015, 57, 1.
64 Jin F, Gu K, Al-Tabbaa A. Construction and Building Materials, 2014, 51, 395.
65 Abdel-Gawwad H A, Mohammed M S, Alomayri T. Construction and Building Materials, 2019, 228, 116827.
66 Zhu X H, Tang D S, Yang K, et al. Construction and Building Materials, 2018, 175, 467.
67 Wang Y B, Yuan Y, Zhao R D, et al. Materials Reports, 2020, 34(8), 15102 (in Chinese).
王永宝, 原元, 赵人达, 等. 材料导报, 2020, 34(8), 15102.
68 Neto A A M, Cincotto M A, Repette W. Cement and Concrete Compo-sites, 2010, 32(4), 312.
69 Neto A A M, Cincotto M A, Repette W. Cement and Concrete Research, 2008, 38(4), 565.
70 Liao J Q. Research on chemical shrinkage and dry shrinkage behavior of alkali activated slag cement and concrete. Master's Thesis, Chongqing University, China, 2007 (in Chinese).
廖佳庆. 碱矿渣水泥与混凝土化学收缩和干缩行为研究. 硕士学位论文, 重庆大学, 2007.
71 Wang S D, Scrivener K L. Cement and Concrete Research, 2003, 33(5), 769.
72 Chen B, Wang J, Zhao J Y. Materials, 2020, 13(16), 3499.
73 Jin F, Al-Tabbaa A. Construction and Building Materials, 2015, 81, 58.
74 Jiao Z Z, Wang Y, Zheng W Z, et al. Construction and Building Materials, 2018, 179, 11.
75 Gao X, Yu Q L, Brouwers H J H. Construction and Building Materials, 2016, 119, 175.
76 Aydn S, Baradan B. Composites Part B Engineering, 2014, 57, 166.
77 Jiao Z Z, Wang Y, Zheng W Z, et al. Advances in Materials Science and Engineering, 2018, 2018, 1.
78 Krizan D, Zivanovic B. Cement and Concrete Research, 2002, 32(8), 1181.
79 Cao R L, Li B L, You N Q, et al. Construction and Building Materials, 2018, 192, 123.
80 Kim H J, Tafesse M, Lee H K, et al. Cement and Concrete Research, 2019, 123, 105771.
81 Zhang J, Cong G, Yang C H. Concrete, 2010(10), 122 (in Chinese).
张俊, 丛钢, 杨长辉. 混凝土, 2010(10), 122.
82 Li S, Liu H X, Yang Y, et al. Materials Reports, 2021, 35(4), 4088 (in Chinese).
李爽, 刘和鑫, 杨永, 等. 材料导报, 2021, 35(4), 4088.
83 Matalkah F, Salem T, Shaafaey M, et al. Construction and Building Materials, 2019, 201, 563.
84 Chi M. Construction and Building Materials, 2012, 35, 240.
85 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 1999, 29(10), 1619.
86 Xiang J C, He Y, Liu L P, et al. Construction and Building Materials, 2020, 262, 120056.
87 Zhao R D, Wang Y B, Yuan Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(6), 1695 (in Chinese).
赵人达, 王永宝, 原元, 等. 硅酸盐通报, 2020, 39(6), 1695.
88 Cai Y X, Yu L W, Yang Y, et al. Materials, 2019, 12(10), 1633.
89 He R, Tan Y W, Xue C, et al. China Sciencepaper, 2019, 14(4), 464 (in Chinese).
何锐, 谈亚文, 薛成, 等. 中国科技论文, 2019, 14(4), 464.
90 Wang L C, Zhang L. Journal of Building Materials, 2020, 23(6), 1471 (in Chinese).
王立成, 张磊. 建筑材料学报, 2020, 23(6), 1471.
91 Xia H Y, Zhang G T, Zhao X, et al. Concrete, 2020(12), 85 (in Chinese).
夏慧芸, 张耿通, 赵旭, 等. 混凝土, 2020(12), 85.
92 Yao J B, Yuan J, Song X F, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2335 (in Chinese).
姚嘉斌, 袁洁, 宋学锋, 等. 硅酸盐通报, 2019, 38(7), 2335.
93 Fu C Q, Ye H L, Lei A, et al. Construction and Building Materials, 2020, 232, 117225.
94 Yao X L, Jiang X, Zhu X H, et al. China Concrete and Cement Pro-ducts, 2017(6), 6 (in Chinese).
姚晓乐, 江星, 朱效宏, 等. 混凝土与水泥制品, 2017(6), 6.
95 Lee N K, Abate S Y, Kim H K. Construction and Building Materials, 2018, 159, 286.
96 Collins F, Sanjayan J G. Cement and Concrete Research, 1999, 29(4), 607.
97 Chen P Y, Wang J L, Wang L, et al. Cement and Concrete Composites, 2019, 104, 103351.
98 Zhang L F, Song S S, Liang Q S. Applied Chemical Industry, 2020, 49(9), 2168 (in Chinese).
张兰芳, 宋松松, 梁秋爽. 应用化工, 2020, 49(9), 2168.
[1] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[2] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[3] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[4] 陈潇, 卢亚磊, 王稷良, 杜新宇. 基于风积沙特性的固化剂组成设计及其固化机理研究[J]. 材料导报, 2022, 36(16): 21110087-8.
[5] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[6] 赵晓雯, 张检梅, 陈徐东, 季韬. 生石灰-碳酸钠掺量和矿渣活性对碱矿渣砂浆抗裂性能的影响[J]. 材料导报, 2022, 36(16): 21030241-5.
[7] 郑伟豪, 何娟, 伍勇华, 宋学锋, 桑国臣. 活性MgO对碱矿渣水泥收缩性能的影响[J]. 材料导报, 2022, 36(10): 21040175-8.
[8] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[9] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[10] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[11] 李青, 杨长辉, 陈平, 杨凯, 明阳, 赵艳荣. 利用硬脂酸钙改善孔结构以降低碱矿渣水泥石吸水速率[J]. 材料导报, 2021, 35(23): 23241-23245.
[12] 徐士林, 李绍纯, 耿永娟, 张友来, 陈旭, 许绍宸. 硅烷复合乳液对水泥砂浆干燥收缩性能及力学性能的影响[J]. 材料导报, 2021, 35(22): 22045-22050.
[13] 孙道胜, 李泽英, 刘开伟, 王爱国, 黄伟, 张高展. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033.
[14] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[15] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed