Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23030157-10    https://doi.org/10.11896/cldb.23030157
  无机非金属及其复合材料 |
采用持久发光材料为内部光源的光催化复合材料研究进展
蔡心杰1,2, 徐亦冬2,*, 王玉全1,2, 武金婷2
1 浙江大学建筑工程学院,杭州 310058
2 浙大宁波理工学院土木建筑工程学院,浙江 宁波 315100
A State-of-the-art Review on Photocatalytic Composite Materials Using Persistent Luminescent Materials as Internal Light Sources
CAI Xinjie1,2, XU Yidong2,*, WANG Yuquan1,2, WU Jinting2
1 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2 College of Civil Engineering, NingboTech University, Ningbo 315100, Zhejiang, China
下载:  全 文 ( PDF ) ( 23668KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化材料和持久发光材料(LPLs)均是以太阳能为能量来源的清洁材料,其中光催化材料已在空气净化、医疗卫生、自清洁建材等领域获得显著的成果。目前,已有研究表明将LPLs作为光催化材料的内部光源可以进一步改进光催化材料的催化时长和效率,因此本文旨在总结现有关于持久发光-光催化复合材料的国内外研究进展:首先介绍了光催化材料及LPLs的种类;其次讨论了持久发光-光催化复合材料的复合条件、作用机理、合成方法;最后总结了持久发光-光催化复合材料的催化性能研究进展,并对未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡心杰
徐亦冬
王玉全
武金婷
关键词:  光催化  持久发光材料  水泥基材料  污染物降解    
Abstract: Both catalytic materials and long-lasting luminescent materials (LPLs) are environmentally clean materials that harness solar energy as their energy source. Among these, the utilization of catalytic materials has demonstrated significant advancements in various domains, including air purification, medical health, and the development of self-cleaning building materials. In light of the studies suggesting that the integration of LPLs as internal light sources within catalytic materials can augment both their durability and effectiveness, this paper endeavors to provide a comprehensive overview of domestic and international research on persistent luminescence-photocatalytic composite materials. First, the various types of photocatalytic materials and LPLs are reviewed. Then, the composite conditions, action mechanisms, and synthesis methods of persistent luminescence-photocatalytic composite materials are discussed. At last, research progress on the catalytic performance of persistent luminescence-photocatalytic composite materials is summarized, and the future research directions are discussed.
Key words:  photocatalysis    persistent luminescent materials    cement-based materials    pollutant degradation
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TU525  
基金资助: 浙江省自然科学基金重点项目(LZ22E080003);浙江省交通厅科技计划项目(202225)
通讯作者:  * 徐亦冬,浙大宁波理工学院教授,浙江大学硕士研究生导师。2014年获东南大学材料学博士学位,2015年于英国Plymouth University作访问学者,主要从事先进土木工程材料、混凝土耐久性等领域的研究。主持国家自然科学基金2项、浙江省自然科学基金2项(其中重点项目1项),在J.Hazard.Mater.、J.Clean Prod.、《硅酸盐学报》等期刊发表论文100余篇。xyd@nit.zju.edu.cn   
作者简介:  蔡心杰,2022年6月于浙江大学获得工学学士学位。现为浙江大学建筑工程学院硕士研究生,在徐亦冬教授的指导下开展研究工作。目前主要研究领域为光催化水泥基材料。
引用本文:    
蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
CAI Xinjie, XU Yidong, WANG Yuquan, WU Jinting. A State-of-the-art Review on Photocatalytic Composite Materials Using Persistent Luminescent Materials as Internal Light Sources. Materials Reports, 2024, 38(15): 23030157-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030157  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23030157
1 Loganathan P, Kandasamy J, Jamil S, et al. Chemosphere, 2022, 296, 133961.
2 Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, et al. Environmental Technology & Innovation, 2021, 22, 101504.
3 Leiknes T. Journal of Environmental Sciences, 2009, 21, 8.
4 Senanu L D, Kranjac-Berisavljevic G, Cobbina S J. Environmental Technology & Innovation, 2023, 29, 103005.
5 Ilie G. Metalurgia International, 2009, 14, 25.
6 Fujishima A, Honda K. Nature, 1972, 238, 37.
7 Kumar P R, Divya N. Materials Today:Proceedings, 2023, 72, 2749.
8 Kołodziejczak-Radzimska A, Jesionowski T. Materials Basel Switzerland, 2014, 7, 2833.
9 Liu X, Wang F, Wang Q. Physical Chemistry Chemical Physics, 2012, 14, 7894.
10 Liu X, Chen X, Li Y, et al. Journal of Materials Chemistry A, 2019, 7, 19173.
11 Emin S, Abdi F F, Fanetti M, et al. Journal of Electroanalytical Chemistry, 2014, 717, 243.
12 Chen L, Meng D, Wu X, et al. Materials Letters, 2016, 176, 143.
13 Liu H, Hou H, Gao F, et al. ACS Applied Materials Interfaces, 2016, 8, 1929.
14 Murcia-López S, Fàbrega C, Monllor-Satoca D, et al. ACS Applied Materials Interfaces, 2016, 8, 4076.
15 Guo M, Wang Y, He Q, et al. RSC Advancesances, 2015, 5, 58633.
16 Tolod K, Hernández S, Russo N. Catalysts, 2017, 7, 13.
17 He R, Huang X, Zhang J, et al. Materials Basel Switzerland, 2019, 12, 2182.
18 Janus M, Mądraszewski S, Zając K, et al. Materials, 2019, 12, 3756.
19 Xu Y, Lin B, Yu X, et al. Construction and Building Materials, 2023, 377, 131122.
20 van den Eeckhout K, Smet P F, Poelman D. Materials, 2010, 3, 2536.
21 Wu S, Pan Z, Chen R, et al. Applications of inorganic afterglow phosphors, Springer International Publishing, Germany, 2017, pp.101.
22 Shi C, Qi Z. Journal of Inorganic Materials, 2016, 19(5), 961.
23 Li H, Yin S, Wang Y, et al. Journal of Molecular Catalysis A:Chemical, 2012, 363, 129.
24 Fan J M, Zhao Z H, Gong C, et al. Journal of Nanoscience and Nanotechnology, 2018, 18, 1675.
25 Li H H, Wang Y H. Materials Science Forum, 2009, 620, 671.
26 Kim J S, Sung H J, Jung S C. Ceramics for environmental systems, John Wiley & Sons, US, 2016, pp 23.
27 Yan J, Liu C, Vlieland J, et al. Journal of Luminescence, 2017, 183, 97.
28 Bedyal A K, Kumar V, Singh V K, et al. Radiation Effects and Defects in Solids, 2013, 168, 1022.
29 Luo H, Bos A J J, Dobrowolska A, et al. Physical Chemistry Chemical Physics, 2015, 17, 15419.
30 Lian S, Qi Y, Rong C, et al. The Journal of Physical Chemistry C, 2010, 114, 7196.
31 Jin Y, Hu Y, Chen L, et al. Journal of the American Ceramic Society, 2013, 96, 3821.
32 Dhanalakshmi M, Basavaraj R B, Darshan G P, et al. Microchemical Journal, 2019, 145, 226.
33 Zhang J, Wang Y, Guo L, et al. Journal of the American Ceramic Society, 2012, 95, 243.
34 Zhang X, Nie J, Liu S, et al. Journal of the American Ceramic Society, 2018, 101, 1576.
35 uzun E, ztürk E, Kalaycioglu O N, et al. Journal of Luminescence, 2016, 173, 73.
36 Liu J M, Liu Y Y, Zhang D D, et al. ACS Applied Materials Interfaces, 2016, 8, 29939.
37 Li Y, Li Y Y, Sharafudeen K, et al. Journal of Materials Chemistry C, 2014, 2, 2019.
38 Yan W Z, Lin L, Chen Y H, et al. Chinese Journal of Luminescence, 2008, 29, 114.
39 Ueda J, Kuroishi K, Tanabe S. Applied Physics Letters, 2014, 104, 101904.
40 Liu F, Liang Y, Pan Z. Physical Review Letters, 2014, 113, 177401.
41 Abdukayum A, Chen J T, Zhao Q, et al. Journal of the American Chemical Society, 2013, 135, 14125.
42 Zhong R, Zhang J, Zhang X, et al. Journal of Luminescence, 2006, 119, 327.
43 Li L, Zeng R, Wang H. Journal of Alloys and Compounds, 2018, 765, 249.
44 Wang J, Ma Q, Zheng W, et al. ACS Nano, 2017, 11, 8185.
45 Cong Y, He Y, Dong B, et al. Optical Materials, 2015, 42, 506.
46 Li Y, Li Y, Chen R, et al. NPG Asia Materials, 2015, 7, e180.
47 Li J, Pang R, Sun W, et al. Journal of Materials Science:Materials in Electronics, 2018, 29, 4163.
48 Dou X, Xiang H, Wei P, et al. Materials Research Bulletin, 2018, 105, 226.
49 Kang F, Zhang Y, Peng M. Inorganic Chemistry, 2015, 54, 1462.
50 Zheng W, Wu H, Ju G, et al. Dalton Transactions, 2018, 48, 253.
51 Sun W, Pang R, Li H, et al. Journal of Materials Chemistry C, 2017, 5, 1346.
52 Feng P, Wei Y, Wang Y, et al. Journal of the American Ceramic Society, 2016, 99, 2368.
53 Wang S, Chen W, Zhou D, et al. Journal of the American Ceramic Society, 2017, 100, 3514.
54 Wang X, Boutinaud P, Li L, et al. Journal of Materials Chemistry C, 2018, 6, 10367.
55 Jin Y, Hu Y, Chen L, et al. Radiation Measurements, 2013, 51, 18.
56 Zhang S, Hu Y, Chen R, et al. Optical Materials, 2014, 36, 1830.
57 Shi J, Sun X, Zheng S, et al. Advanced Optical Materials, 2019, 7, 1900526.
58 Yang Z, Liao J, Wang T, et al. Materials Express, 2014, 4, 172.
59 Hu R, Zhang Y, Zhao Y, et al. Chemical Engineering Journal, 2020, 392, 124807.
60 Kuang J, Liu Y. Journal of the Electrochemical Society, 2006, 153, 245.
61 Fu J. Journal of the American Ceramic Society, 2002, 85, 255.
62 Yi S J, Liu Y L, Zhang J X, et al. Chemical Journal of Chinese Universities, 2004, 25, 8.
63 Liang Y, Liu F, Chen Y, et al. Dalton Transactions, 2016, 45, 1322.
64 Zhao H, Shi M, Zou J, et al. Ceramics International, 2017, 43, 2750.
65 Zhuang Y, Katayama Y, Ueda J, et al. Optical Materials, 2014, 36, 1907.
66 Ning L, Tanner P A, Harutunyan V V, et al. Journal of Luminescence, 2007, 127, 397.
67 Kang F, Sun G, Boutinaud P, et al. Chemical Engineering Journal, 2021, 403, 126099.
68 Aitasalo T, Hölsä J, Jungner H, et al. The Journal of Physical Chemistry B, 2006, 110, 4589.
69 Li S, Wang W, Chen Y, et al. Catalysis Communications, 2009, 10, 1048.
70 Kim B J, Hasan Z, Kim J S. Journal of Ceramic Processing Research, 2013, 14, 601.
71 Zhou C, Zhan P, Zhao J, et al. Ceramics International, 2020, 46, 27884.
72 Xiong Y, Zhao J, Zheng Z, et al. Journal of Materials Science:Materials in Electronics, 2021, 32, 7271.
73 Eun S R, Mavengere S. Catalysts, 2021, 11, 261.
74 Mavengere S, Kim J S. Applied Nanoscience, 2022, 12, 3387.
75 Meng Y, Shen Y, Hou L, Zuo G, et al. Journal of Alloys and Compounds, 2016, 655, 1.
76 Wu H, Peng W, Wang Z M, et al. RSC Advances, 2016, 6, 37995.
77 Yu D B, Mavengere S, Kim J S. Applied Nanoscience, 2022, 12, 3373.
78 Kim J S, Sung H J, Kim B J. Applied Surface Science, 2015, 334, 151.
79 Zhou J, Wang R, Jiao T, et al. Ceramics International, 2019, 45, 13112.
80 Sun H, Wu H, Jin Y, et al. Materials Letters, 2019, 240, 100.
81 Li H, Yin S, Sato T. Nanoscale Research Letters, 2010, 6, 5.
82 Li H, Yin S, Wang Y, et al. Environmental Science Technology, 2012, 46, 7741.
83 Kim S W, Kim J S. Journal of the Korean Ceramic Society, 2013, 50, 50.
84 Xu Q, Mavengere S, Kim J S. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 473.
85 Li H, Yin S, Sato T. Research on Chemical Intermediates, 2013, 39, 1501.
86 Locardi F, Sanguineti E, Fasoli M, et al. Catalysis Communications, 2016, 74, 24.
87 Feng P, Wei Y, Wang Y, et al. Journal of the American Ceramic Society, 2016, 99, 2368.
88 Ma X, Zhang J, Li H, et al. Journal of Alloys and Compounds, 2013, 580, 564.
89 Mavengere S, Yadav H, Kim J S. Journal of Ceramic Science and Technology, 2017, 8, 67.
90 Mavengere S, Jung S C, Kim J S. Catalysts, 2018, 8, 521.
91 Mavengere S, Kim J S. Applied Surface Science, 2018, 444, 491.
92 Zargoosh K, Moradi A H. Environmental Nanotechnology, Monitoring Management, 2019, 12, 100273.
93 Menon S G, Bedyal A K, Pathak T, et al. Journal of Alloys and Compounds, 2021, 860, 158370.
94 Li H, Yin S, Wang Y, et al. Journal of Materials Chemistry A, 2012, 1, 1123.
95 Li S S, Liu M, Wen L, et al. Environmental Science and Pollution Research, 2023, 30, 322.
96 Yang C, Zhang F, Liu X, et al. Journal of Solid State Chemistry, 2022, 310, 123057.
97 Hong K, Hong J, Kim Y. Journal of Photochemistry and Photobiology A:Chemistry, 2020, 396, 112520.
98 Li H, Yin S, Wang Y, et al. Journal of Catalysis, 2012, 286, 273.
99 Mavengere S, Kim J S. Coatings, 2020, 10, 917.
100 Jia Z M, Zhao Y R, Shi J N. Construction and Building Materials, 2023, 370, 130462.
101 Chen X, Qiao L, Zhao R, et al. Journal of Environmental Chemical Engineering, 2023, 11, 109416.
102 Zhou X R, Shen L P. Advanced Materials Research, 2011, 332, 1931.
103 Qi M, Shen L P, Wang Y M, et al. Applied Mechanics and Materials, 2013, 405, 2839.
[1] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[2] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[3] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[4] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[5] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[6] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[7] 许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
[8] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[9] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[10] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[11] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[12] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[13] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[14] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[15] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed