Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 22100219-8    https://doi.org/10.11896/cldb.22100219
  无机非金属及其复合材料 |
高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述
杨志强1,2, 李化建1,2,*, 温家馨3, 董昊良3, 易忠来1,2, 黄法礼1,2, 王振1,2
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京100081
2 高速铁路轨道技术国家重点实验室,北京 100081
3 中国铁道科学研究院研究生部,北京 100081
Fatigue Damage and Service Life of Cement-based Materials and Structures in High-speed Railway Ballastless Track: a Review
YANG Zhiqiang1,2, LI Huajian1,2,*, WEN Jiaxin3, DONG Haoliang3, YI Zhonglai1,2, HUANG Fali1,2, WANG Zhen1,2
1 Railway Engineering Research Institute, China Academy of Railway Science Corporation Limited, Beijing 100081, China
2 State Key Laboratory for Track Technology of High-Speed Railway, Beijing 100081, China
3 Graduate School, China Academy of Railway Science, Beijing, 100081, China
下载:  全 文 ( PDF ) ( 15282KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高速铁路无砟轨道承受列车运行带来的周期性疲劳荷载作用,其稳定性和耐久性直接影响列车的运营安全。本文综述了无砟轨道混凝土轨道板、轨枕、道床板、充填层水泥乳化沥青砂浆(CA砂浆)和自密实混凝土(SCC)等水泥基材料的抗疲劳性能要求、疲劳损伤特征及影响因素,总结了正常服役和典型缺陷状态下CRTS Ⅰ型、Ⅱ型、Ⅲ型板式及双块式无砟轨道结构的疲劳损伤与寿命预测现状。蒸养构件热损伤、CA砂浆中沥青老化以及环境因素的耦合作用加速了水泥基材料的疲劳失效,层间粘结性能不足易导致无砟轨道结构疲劳寿命缩短。本文可为既有无砟轨道的运营维护和更长寿命无砟轨道结构设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨志强
李化建
温家馨
董昊良
易忠来
黄法礼
王振
关键词:  无砟轨道  水泥基材料  轨道板  疲劳损伤  寿命预测    
Abstract: Ballastless track, the direct bearing structure of high-speed running train, suffers from the periodic fatigue loads during the service life. The stability and durability of ballastless track structure is of significance for the safety of the high-speed running train. In this paper, the fatigue performance requirements, fatigue damage characteristics and influence factors of ballastlesss track cement-based materials including concrete track, sleeper, slab, cement emulsified asphalt mortar (CA mortar) and self-compacting concrete (SCC) were firstly summarized, respectively. Then, the fatigue damage and service life of CRTS Ⅰ, CRTS Ⅱ, CRTS Ⅲ slab ballastless track and double-block ballastless track under normal and typical defect conditions were elaborated. Studies show that the degree of fatigue damage of ballastlesss track cement-based materials was accelerated by the heat damage of steam-cured concrete, ageing of asphalt of CA mortar and environment factors, and the weak interlayer bon-ding results in the decrease of fatigue life of ballastless track structure. This paper will provide references for the operation and maintenance of existing ballastless track and the design of longer service life ballastless track structure in the future.
Key words:  ballastless track    cement-based materials    track slab    fatigue damage    service life
发布日期:  2023-09-06
ZTFLH:  TU528.0  
基金资助: 国家自然科学基金(U1934206;52178260);腾讯基金会科学探索奖
通讯作者:  *李化建,中国铁道科学研究院研究员、博士研究生导师,主要从事固体废弃物建材资源化、高速铁路新型混凝土及其结构耐久性方面应用基础研究。主持国家自然科学基金、国家重点研发计划、省部级科研课题30余项,发表SCI/EI论文100余篇,编制标准16部,研究成果获国家科技进步二等奖1项、技术发明二等奖1项,中国专利优秀奖2项,省部级科技进步特等奖3项、一等奖7项。chinasailor@163.com   
作者简介:  杨志强,中国铁道科学研究院集团有限公司助理研究员,2021年9月博士毕业于东南大学,主要从事高速铁路高性能混凝土及其耐久性研究工作。
引用本文:    
杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
YANG Zhiqiang, LI Huajian, WEN Jiaxin, DONG Haoliang, YI Zhonglai, HUANG Fali, WANG Zhen. Fatigue Damage and Service Life of Cement-based Materials and Structures in High-speed Railway Ballastless Track: a Review. Materials Reports, 2023, 37(S1): 22100219-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100219  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/22100219
1 Pan Z L, Yao L. Journal of Railway Engineering Society, 2007(z1), 187(in Chinese).
潘自立, 姚力. 铁道工程学报, 2007(z1), 187.
2 Liu X G, Cai C X, Lu C F. High Speed Railway Technology, 2020, 11(2), 1(in Chinese).
刘晓光, 蔡超勋, 卢春房. 高速铁路技术, 2020, 11(2), 1.
3 Feng Q S, Sun K, Chen H P, et al. Construction and Building Materials, 2021, 292(123), 123375.
4 Zhao G T. Ballastless track structure of high speed railway. Beijing: China Railway Publishing House, 2006(in Chinese).
赵国堂. 高速铁路无碴轨道结构. 北京: 中国铁道出版社, 2006.
5 Chen R R, Zhao X, Wang Z Z, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(4), 306.
6 Liu X Y, Zhao P R, Dai F. Journal of Modern Transportation, 2011, 19(3), 154.
7 Cai C B, Zhu S Y, Liu X B, et al. Scientia Sinica Technologica, 2014, 44(7), 707(in Chinese).
蔡成标, 朱胜阳, 刘秀波, 等. 中国科学:技术科学, 2014, 44(7), 707.
8 Li H J, Yang Z Q, Wen J X, et al. Journal of Sustainable Cement-Based Materials, 2022.
9 Li H J. High-speed railway self-compacting concrete technology, Chemical Industry Press, China, 2018(in Chinese).
李化建. 高速铁路自密实混凝土技术, 化学工业出版社, 2018.
10 Zhao L H, Dai X, Gao L. Journal of Railway Science and Engineering, 2018, 15(10), 2487(in Chinese).
赵丽华, 戴鑫, 高亮. 铁道科学与工程学报, 2018, 15(10), 2487.
11 Xu H, Lin H S, Yan H, et al. Journal of Railway Engineering Society, 2017, 34(12), 30(in Chinese).
徐浩, 林红松, 颜华, 等. 铁道工程学报, 2017, 34(12), 30.
12 Song Y P. Fatigue characteristics and design mechanism of concrete structures, Chinese Machine Press, China, 2006(in Chinese).
宋玉普. 混凝土结构的疲劳性能及设计原理, 机械工业出版社, 2006
13 Hu Suoting. Research on key technologies of 400 km/h high-speed railway-sub report 1: research on key technologies of public works engineering, Railway Engineering Research Institute, China Academy of Railway Science, China, 2018, pp.2(in Chinese).
胡所亭. 400 km/h高速铁路关键技术研究—分报告之一:工务工程关键技术研究,中国铁道科学研究铁道建筑研究所, 2018, pp.2.
14 Ren J, Deng S, Wei K, et al. Construction and Building Materials, 2019, 208, 622.
15 Pan Y J, Zhang Y L, Liu X G, et al. Railway Engineering, 2014(5), 1(in Chinese).
潘永杰, 张玉玲, 刘晓光, 等. 铁道建筑, 2014(5), 1.
16 Yang Y, Zhang G J, Wu G, et al. Engineering Structures, 2022, 252, 113659.
17 Tepfers R. Journal Proceedings, 1979, 76(8), 919.
18 Yao M C. Concrete World, 2013(2), 49(in Chinese).
姚明初. 混凝土世界, 2013(2), 49.
19 Committee A. ACI Journal Proceedings, 1990, 71(3), 97.
20 Raithby K D, Galloway J W. ACI Symposium Publication, 1974, 41, 15.
21 Otto C, Elsmeier K, Lohaus L. In:High Tech Concrete: Where Techno-logy and Engineering Meet, Springer International Publishing, Cham, 2018, pp.1401.
22 Yang Z Q, Li H J, Wen J X, et al. International Journal of Fatigue, 2023, 166,107247.
23 You L S, Jiang L H, Chu H Q. Journal of Wuhan University of Technology, Materials Science Edition, 2015, 30(2), 361.
24 Fu C Q, Ye H L, Jin X Y, et al. Construction and Building Materials, 2016, 125, 714.
25 Nordby G M. Journal of the American Concrete Institute, 1958, 55(8), 191.
26 Zhang W P, Ye Z W, Gu X L, et al. Journal of Structural Engineering, 2017, 143(7), 04017048.
27 Hsu T T. Journal Proceedings, 1981, 78(4), 292.
28 Tamulénas V, Gelazius V, Ramanauskas R. Mokslas-Lietuvos Ateitis, 2014, 6, 468.
29 Sain T, Kishen J M C. ACI Structural Journal, 2007, 104(5), 621.
30 Xu Y J, Yuan H. Engineering Fracture Mechanics, 2009, 76(2), 165.
31 Skar A, Poulsen P N, Olesen J F. Engineering Fracture Mechanics, 2017, 181, 38.
32 Bazant Z P, Xu K. ACI Materials Journal, 1991, 88(4), 390.
33 Hillerborg A, Modéer M, Petersson P E. Cement and Concrete Research, 1976, 6, 773.
34 Liang J S, Ding Z D, Li J. Journal of Building Structures, 2017, 38(5), 149(in Chinese).
梁俊松, 丁兆东, 李杰. 建筑结构学报, 2017, 38(5), 149.
35 Xie Y J, Wang M, Ma K L, et al. Journal of Building Materials, 2020, 23(3), 521(in Chinese).
谢友均, 王猛, 马昆林, 等. 建筑材料学报, 2020, 23(3), 521.
36 Lollini F, Redaelli E. Construction and Building Materials, 2021, 276, 122122.
37 Ren J J, Du W, Deng S J, et al. Journal of Southwest Jiaotong University, 2021, 56(3), 510(in Chinese).
任娟娟, 杜威, 邓世杰, 等. 西南交通大学学报, 2021, 56(3), 510.
38 Jiang L H, Li C Z, Zhu C L, et al. Construction and Building Materials, 2017, 151, 119.
39 Li W T, Sun W, Jiang J Y. Construction and Building Materials, 2011, 25(5), 2604.
40 Hong J X, Miao C W, Huang W, et al. China Civil Engineering Journal, 2012, 45(6), 83(in Chinese).
洪锦祥, 缪昌文, 黄卫, 等. 土木工程学报, 2012, 45(6), 83.
41 Moghadas Nejad F, Habibi M, Hosseini P, et al. Journal of Cleaner Production, 2017, 156, 717.
42 Shan Y C, Zheng S G, Zhang X F, et al. Materials, 2018, 11(11), 2259.
43 Xiao H, Zhang Y R, Li Q H, et al. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(7), 678.
44 Wang J F, M. Asce, Zhou Y B. International Journal of Geomechanics, 2019, 19(5).
45 Wang F Z, Liu Z C. Journal of Wuhan University of Technology, 2008, 190(11), 79(in Chinese).
王发洲, 刘志超. 武汉理工大学学报, 2008, 190(11), 79.
46 Xu H, Wang P, Sun H Y, et al. Journal of Building Materials, 2015, 18(5), 861(in Chinese).
徐浩, 王平, 孙宏友, 等. 建筑材料学报, 2015, 18(5), 861.
47 Wang Y, Yuan Q, Deng D H. Construction and Building Materials, 2019, 208, 613.
48 Fu Q, Xie Y J, Long G C, et al. International Journal of Impact Engineering, 2017, 106, 44.
49 Xie Y J, Fu Q, Long G C, et al. Scientia Sinica Technologica, 2014, 44(7), 672(in Chinese).
谢友均, 傅强, 龙广成, 等. 中国科学:技术科学, 2014, 44(7), 672.
50 Fu Q, Xie Y J, Zhen K R, et al. Journal of the Chinese Ceramic Society, 2014, 42(8), 989(in Chinese)
傅强, 谢友均, 郑克仁, 等. 硅酸盐学报, 2014, 42(8), 989.
51 Wan Z A, Ma K L, Long G C, et al. Journal of Railway Science and Engineering, 2019, 16(3), 557(in Chinese).
万镇昂, 马昆林, 龙广成, 等. 铁道科学与工程学报 2019, 16(3), 557.
52 Ma K L, Wan Z A, Long G C, et al. Journal of the China Railway Society, 2020, 42(11), 139(in Chinese).
马昆林, 万镇昂, 龙广成, 等. 铁道学报, 2020, 42(11), 139.
53 Wang Z A, Ma K L, Long G C, et al. Materials Reports, 2019, 33(4), 634(in Chinese).
万镇昂, 马昆林, 龙广成, 等. 材料导报, 2019, 33(4), 634.
54 Long G C, Li N, Xie Y J, et al. Journal of Railway Science and Engineering, 2018, 15(6), 1363(in Chinese).
龙广成, 李宁, 谢友均, 等. 铁道科学与工程学报, 2018, 15(6), 1363.
55 Xie Y J, Li H J, Feng Z W, et al. IJR International Journal of Railway, 2009, 2(1), 30.
56 Matias S R, Ferreira P A. Structure Infrastructure Engineering, 2020, 16(12), 1635.
57 Vogt L, Von Wolffersdorff P, Rehfeld E. Vortrag zum Euroean Slab Track Symposium in Brüssel am, 2005, pp.1.
58 Takahashi T, Sekine E. Quarterly Report of RTRI, 2011, 52(3), 149.
59 Han J, Zhao G T, Xiao X B, et al. Journal of Zhejiang University-Science A, 2015, 16(12), 976.
60 Ren J J, Tian G Y, Xu J D, et al. Journal of the China Railway Society, 2019, 41(3), 110(in Chinese).
任娟娟, 田根源, 徐家铎, 等. 铁道学报, 2019, 41(03), 110.
61 Li S Y, Yang R S. Railway Standard Design, 2016, 60(3), 34(in Chinese).
李思云, 杨荣山. 铁道标准设计, 2016, 60(3), 34.
62 Wei Y X, Yang B, Zhao Z H, et al. Journal of Central South University (Science and Technology), 2019, 50(12), 3156(in Chinese).
韦有信, 杨斌, 赵振航, 等. 中南大学学报(自然科学版), 2019, 50(12), 3156.
63 Feng Q S, Sun K, Chen H P, et al. Journal of Aerospace Engineering, 2019, 32(4), 04019037.
64 Xin X, Ren Z S. Applied Sciences-Basel, 2022, 12(9), 1.
65 Chen Z, Liu X Y, Hu Y, et al. Journal of Southwest Jiaotong University, 2014, 40(9), 1000(in Chinese).
陈醉, 刘学毅, 胡颖, 等. 西南交通大学学报, 2022, 40(9), 1000.
66 Deng S, Ren J, Wei K, et al. Construction and Building Materials, 2021, 295, 123679.
67 Zhao G T, Gao L, Zhao L, et al. Journal of the China Railway Society, 2017, 39(1), 1(in Chinese).
赵国堂, 高亮, 赵磊, 等. 铁道学报, 2017, 39(1), 1.
68 Zhang Y R, Wu K, Gao L, et al. Construction and Building Materials, 2019, 224, 387.
69 Chen L, Chen J J, Wang J X. Journal of the China Railway Society, 2018, 40(8), 130(in Chinese).
陈龙, 陈进杰, 王建西. 铁道学报, 2018, 40(8), 130.
70 Zeng Z P, Huang X D, Yan B, et al. Construction and Building Materials, 2021, 303, 124465.
71 Yu Z W, Xie Y, Shan Z, et al. Journal of Advanced Concrete Technology, 2018, 16(5), 233.
72 Liu X Y, Liu D, Zhao P R, et al. Journal of Railway Engineering Society, 2016, 33(11), 51(in Chinese).
刘学毅, 刘丹, 赵坪锐, 等. 铁道工程学报, 2016, 33(11), 51.
73 Wang A H. Study on the durability of CRTS Ⅲ ballastless slab track. Master’s Thesis, Beijing Jiaotong University, China, 2012(in Chinese).
王安华. CRTS III型板式无砟轨道耐久性研究. 硕士学位论文, 北京交通大学, 2012.
74 Wang J, Gao L, Zhao W Q, et al. Construction and Building Materials, 2022, 360, 129459.
75 Xie L, Liu X Y, Cao S H, et al. Journal of Railway Science and Engineering, 2016, 13(2), 219(in Chinese).
谢露, 刘学毅, 曹世豪, 等. 铁道科学与工程学报, 2016, 13(2), 219.
76 Chen D L. The stress analysis of simulation and the fatigue life estimate of the Rheda2000 ballastless track slab. Master’s Thesis, Univertisy of South China, China, 2010(in Chinese).
陈大磊. Rheda2000型无碴轨道道床板受力仿真分析与疲劳寿命预测. 硕士学位论文, 南华大学, 2010.
77 Wang M Z. Interface failure analysis of double-block ballastless track in high-speed railway under joint actions of trainand environment loads. Ph. D. Thesis, Southwest Jiaotong University, China, 2013(in Chinese).
王明昃. 高速铁路列车荷载-环境复合作用下双块式无砟轨道层间粘结失效行为分析. 博士学位论文, 西南交通大学, 2018.
78 Cao Y F. Study on fatigue characteristics of curved double-block ballastless track on subgrade. Master’s Thesis, Central South University, China, 2012(in Chinese).
曹扬风. 复杂荷载下曲线地段路基上双块式无砟轨道疲劳特性研究. 硕士学位论文, 中南大学, 2012.
[1] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[2] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[3] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[4] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[5] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[6] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[7] 徐鹏, 张轩翰, 明高林, 施诗. 纳米改性水泥基材料功能化研究进展[J]. 材料导报, 2023, 37(16): 21080265-10.
[8] 朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
[9] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[10] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[11] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[12] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[13] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[14] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[15] 陈亚军, 韦第升, 彭剑书, 宋先捷. 基于蚀坑形貌特征的2198-T8铝锂合金预腐蚀疲劳寿命预测[J]. 材料导报, 2022, 36(21): 21080028-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed