Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24020097-9    https://doi.org/10.11896/cldb.24020097
  无机非金属及其复合材料 |
金属卤化物钙钛矿材料自掺杂研究进展
陈旭, 廖静, 谭理, 李海进*
西南石油大学新能源与材料学院, 成都 610500
Research Progress of Self-doping in Metal Halide Perovskite Materials
CHEN Xu, LIAO Jing, TAN Li, LI Haijin*
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 17850KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来大量研究表明,自掺杂可定向调控有机-无机金属卤化物钙钛矿材料导电类型(P型或N型),优化其光吸收与载流子传输性能,进而提升器件光电转换效率。连续沉积自掺杂类型相反的两种钙钛矿,可制得新型双钙钛矿层异(同)质结(P-P结)太阳能电池。与传统钙钛矿太阳能电池相比,自掺杂P-P结太阳能电池的光活性层存在额外内建电场,可促进载流子的传输,从而减少非辐射复合。同时,钙钛矿双极性电荷传输的特性使其可充当电子传输层和空穴传输层。这允许P-P结太阳能电池摒弃传输层结构,简化器件结构、优化制备流程,为钙钛矿太阳能电池的进一步发展提供新方向。本文围绕有机-无机金属卤化物钙钛矿材料,详细阐述了调控其自掺杂类型的方法,讨论了自掺杂P-P结太阳能电池的物理机制及影响因素,梳理并总结了自掺杂钙钛矿在制备太阳能电池方面的应用,最后对其当前的技术难点和未来发展进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈旭
廖静
谭理
李海进
关键词:  钙钛矿  自掺杂  P(N)型钙钛矿  P-P异(同)质结    
Abstract: In recent years, numerous research has demonstrated that self-doping enables precise modulation of the conductivity type (p-type or n-type) in organic-inorganic metal halide perovskite materials, leading to improved light absorption and charge carrier transport, ultimately resulting in enhanced power conversion efficiency of solar cells. Furthermore, the sequential deposition of perovskite layers with different doping types has facilitated the development of novel bilayer perovskite homojunction/heterojunction (P-P junction) solar cells. When compared to conventional pe-rovskite solar cells, P-P junction solar cells exhibit an additional built-in electric field within the photoactive layer, which efficiently promotes the transmission of carrier, effectively reducing non-radiative recombination. Additionally, the inherent bipolar charge transport characteristics of perovskite materials allow them to function as both electron and hole transport layers. Consequently, the introduction of P-P junctions obviates the need for separate transport layers, thereby optimizing device architecture and simplifying fabrication processes. These advancements provide a promising direction for the further development of perovskite solar cells. This paper focuses on organic-inorganic metal halide perovskite materials, providing detailed insights into the methods employed to regulate self-doping types. It also comprehensively reviews the applications of self-doped perovskites in solar cells, elucidates the physical mechanisms and influencing factors associated with self-doped P-P junction solar cells, and concludes with a summary and outlook on the current technological challenges and future prospects in this field.
Key words:  perovskite    self-doping    P(N)-type perovskite    P-P heterostructure (homojunction)
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TK514  
基金资助: 四川省科技计划项目(2022NSFSC1963);四川省产教融合示范项目(川财教[2022]106号)
通讯作者:  *李海进,博士,西南石油大学讲师、硕士研究生导师。从事光伏新能源相关领域的研究。haijinli@swpu.edu.cn   
作者简介:  陈旭,西南石油大学新能源与材料学院硕士研究生,在李海进讲师的指导下进行研究。目前主要研究方向为金属卤化物钙钛矿半导体太阳能电池。
引用本文:    
陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
CHEN Xu, LIAO Jing, TAN Li, LI Haijin. Research Progress of Self-doping in Metal Halide Perovskite Materials. Materials Reports, 2025, 39(7): 24020097-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020097  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24020097
1 Que M, Que W, Yin X, et al. Nanoscale, 2016, 8(30), 14432.
2 Chen S, Dai X, Xu S, et al. Science, 2021, 373(6557), 902.
3 Min H, Lee D Y, Kim J, et al. Nature, 2021, 598(7881), 444.
4 Correa-Baena J P, Abate A, Saliba M, et al. Energy & Environmental Science, 2017, 10(3), 710.
5 Liang Z, Zhang Y, Xu H, et al. Nature, 2023, 624(7992), 557.
6 Li C, Lu X, Ding W, et al. Acta Crystallographica Section B: Structural Science, 2008, 64(6), 702.
7 Yang W S, Park B W, Jung E H, et al. Science, 2017, 356(6345), 1376.
8 Zhou H, Chen Q, Li G, et al. Science, 2014, 345(6196), 542.
9 Tsai H, Nie W, Blancon J C, et al. Nature, 2016, 536(7616), 312.
10 Green M A, Ho-Baillie A, Snaith H J. Nature Photonics, 2014, 8(7), 506.
11 Stranks S D, Snaith H J. Nature Nanotechnology, 2015, 10(5), 391.
12 Miyata A, Mitioglu A, Plochocka P, et al. Nature Physics, 2015, 11(7), 582.
13 Umari P, Mosconi E, De Angelis F. Scientific Reports, 2014, 4(1), 4467.
14 Stranks S D, Eperon G E, Grancini G, et al. Science, 2013, 342(6156), 341.
15 De Quilettes D W, Vorpahl S M, Stranks S D, et al. Science, 2015, 348(6235), 683.
16 Stranks S D, Burlakov V M, Leijtens T, et al. Physical Review Applied, 2014, 2(3), 034007.
17 Yang Xudong, Chen Han, Bi Enbing, et al. Acta Physica Sinica, 2015, 64(3), 038404.
18 Mahmud M A, Zheng J, Tang S, et al. ACS Energy Letters, 2023, 8(1), 21.
19 Ren X, Yang D, Yang Z, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2421.
20 Sun H, Xiao K, Gao H, et al. Advanced Materials, 2024, 36(2), 2308706.
21 Oku T, Ohishi Y, Suzuki A. Chemistry Letters, 2016, 45(2), 134.
22 Nayak P K, Sendner M, Wenger B, et al. Journal of the American Che-mical Society, 2018, 140(2), 574.
23 Pérez-del-Rey D, Forgács D, Hutter E M, et al. Advanced Materials, 2016, 28(44), 9839.
24 Tse-Wei Wang J, Wang Z, Pathak S, et al. Energy & Environmental Science, 2016, 9(9), 2892.
25 Zohar A, Levine I, Gupta S, et al. ACS Energy Letters, 2017, 2(10), 2408.
26 Ma Z Q, Zhu X, Wang C. Journal of Physics: Conference Series, 2023, 2473(1), 012022.
27 Shi T, Yin W J, Hong F, et al. Applied Physics Letters, 2015, 106(10), 103902.
28 Frolova L A, Dremova N N, Troshin P A. Chemical Communications, 2015, 51(80), 14917.
29 Streetman B G, Banerjee S. Solid state electronic devices, Boston: Pearson, 2015, pp. 209.
30 Ji J, Yan L, Wang X, et al. Solar RRL, 2022, 6(6), 2200028.
31 Li D, Shi J, Xu Y, et al. National Science Review, 2018, 5(4), 559.
32 Yang T, Wu Q, Dai F, et al. Advanced Functional Materials, 2019, 30(20), 1903889.
33 Wang Q, Shao Y, Xie H, et al. Applied Physics Letters, 2014, 105(16), 163508.
34 Kulbak M, Levine I, Barak-Kulbak E, et al. Advanced Energy Materials, 2018, 8(23), 1800398.
35 Yin W J, Shi T, Yan Y. Applied Physics Letters, 2014, 104(6), 063903.
36 Gunawan O, Pae S R, Bishop D M, et al. Nature, 2019, 575(7781), 151.
37 Xu P, Chen S, Xiang H J, et al. Chemistry of Materials, 2014, 26(20), 6068.
38 Cui P, Wei D, Ji J, et al. Nature Energy, 2019, 4(2), 150.
39 Wei H, DeSantis D, Wei W, et al. Nature Materials, 2017, 16(8), 826.
40 Su Z, Chen Y, Li X, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(15), 11053.
41 Paul G, Chatterjee S, Bhunia H, et al. The Journal of Physical Chemistry C, 2018, 122(35), 20194.
42 Mitzi D B, Feild C A, Schlesinger Z, et al. Journal of Solid State Che-mistry, 1995, 114(1), 159.
43 Dang Y, Zhou Y, Liu X, et al. Angewandte Chemie International Edition, 2016, 55(10), 3447.
44 Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorganic Chemistry, 2013, 52(15), 9019.
45 Wang W, Zhou J, Tang W. Journal of Inorganic Materials, 2022, 37(2), 129.
46 Cui P, Wei D, Ji J, et al. Solar RRL, 2017, 1(2), 1600027.
47 Song D, Cui P, Wang T, et al. The Journal of Physical Chemistry C, 2015, 119(40), 22812.
48 Almora O, Aranda C, Mas-Marzá E, et al. Applied Physics Letters, 2016, 109(17), 173903.
49 Deng Y, Ni Z, Palmstrom A F, et al. Joule, 2020, 4(9), 1949.
50 Zhang N, Zhang Z, Liu T, et al. Organic Electronics, 2023, 113, 106709.
51 Zhang P, Wu J, Zhang T, et al. Advanced Materials, 2018, 30(3), 1703737.
52 Xiong L, Guo Y, Wen J, et al. Advanced Functional Materials, 2018, 28(35), 1802757.
53 Suo X L, Liu Y, Zhang L L, et al. Materials Reports, 2021, 35(6), 6015(in Chinese).
索鑫磊, 刘艳, 张立来, 等. 材料导报, 2021, 35(6), 6015.
54 Xu L, Chen X, Jin J, et al. Nano Energy, 2019, 63, 103860.
55 Hatamvand M, Vivo P, Liu M, et al. Vacuum, 2023, 214, 112076.
56 Sun H, Deng K, Xiong J, et al. Advanced Energy Materials, 2020, 10(8), 1903347.
57 Li J, Dewi H A, Wang H, et al. Advanced Functional Materials, 2021, 31(42), 2103252.
58 Yang X, Li Q, Zheng Y, et al. Joule, 2022, 6(6), 1277.
59 Dänekamp B, Müller C, Sendner M, et al. The Journal of Physical Chemistry Letters, 2018, 9(11), 2770.
60 Ren L, Wang M, Li M, et al. Optical Materials, 2020, 100, 109687.
61 Wei Z, Yan K, Chen H, et al. Energy & Environmental Science, 2014, 7(10), 3326.
62 Liu J, Zhou Q, Kyi T N, et al. Journal of Materials Chemistry A, 2019, 7(22), 13777.
63 Zhao Q, Hazarika A, Chen X, et al. Nature Communications, 2019, 10(1), 2842.
64 Chen C, Song Z, Xiao C, et al. Nano Energy, 2019, 61, 141.
65 Xu X, Wang X. Small Structures, 2020, 1(1), 2000009.
66 Ji J, Liu X, Huang H, et al. Acta Physico Chimica Sinica, 2021, 37(4), 2008095(in Chinese).
纪军, 刘新, 黄浩, 等. 物理化学学报, 2021, 37(4), 2008095.
67 Zhang Y, Yang Z, Ma T, et al. Advanced Energy Materials, 2023, 13(12), 2203366.
68 Izadi F, Ghobadi A, Gharaati A, et al. Optik, 2021, 227, 166061.
69 Zhou Y, Fuentes-Hernandez C, Shim J, et al. Science, 2012, 336(6079), 327.
70 Isikgor F H, Zhumagali S T, Merino L V, et al. Nature Reviews Materials, 2022, 8(2), 89.
71 Cho S H, Byeon J, Jeong K, et al. Advanced Energy Materials, 2021, 11(17), 2100555.
72 Bu T, Liu X, Chen R, et al. Journal of Materials Chemistry A, 2018, 6(15), 6319.
[1] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[2] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[3] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[4] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[5] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[6] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[7] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[8] 彭林森, 李凝, 蒋武, 练彩霞. A位缺陷对LaxNiO3+δ在苯酚加氢脱氧反应中催化性能的影响[J]. 材料导报, 2024, 38(23): 23070161-5.
[9] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[10] 何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
[11] 孙元杰, 李志刚, 王艺, 田波, 李金凤, 张楠, 赵浚峰, 张建伟, 李拓, 赵弘韬. 金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23040056-10.
[12] 高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
[13] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[14] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[15] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed