Study on the Adsorption Characteristics of Heavy Metal by Surfactant-modified Magnetic Nanoparticles
SHI Hao1, WANG Ya2, ZHAO Yuling1, LUO Yanli1, YANG Fangyuan3,*, ZHOU Jinlong4
1 College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China 2 College of Electronics and Engineering, Yili Normal University, Yili 835000, Xinjiang, China 3 College of Mathematics and Science, Xinjiang Agricultural University, Urumqi 830052, China 4 College of Water Resources and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
Abstract: Fe3O4@SDS, Fe3O4@CTAB, Fe3O4@SNC 16, and Fe3O4@NPC 16 (collectively called “Fe3O4@surfactants”) nanoparticles with good adsorption properties were prepared in this work by surface modification of ferric oxide using four kinds of surfactants differing in charge pola-rity, i.e., SDS (anionic surfactant), CTAB (cationic surfactant), and SNC 16 and NPC 16 (amphoteric surfactants). The prepared magnetic nanoparticles were characterized by means of XRD, TEM, FTIR, vibrating-sample magnetometry (VSM), and XPS. The effects of surfactant modification on the performance of magnetic Fe3O4 for adsorbing As(Ⅲ) were investigated by adsorption kinetics, adsorption isotherms, and adsorption thermodynamics. The prepared Fe3O4@surfactants particles were approximately spherical, with average particle sizes of around 10 nm. All the Fe3O4@surfactants had saturation magnetizations larger than 70 emu·g-1, making them magnetically separable from solutions. The adsorption processes of As(Ⅲ) by Fe3O4@surfactants could reach equilibrium within 60 min, and corresponded well with the pseudo-second order kinetic model and the Freundlich isotherm expression, indicating the mechanisms of chemisorption-dominant multi-molecular-layer adsorption. Under the same conditions, Fe3O4@CTAB showed the highest adsorption capacity for As(Ⅲ) (55.174 mg/g), largely superior to the other Fe3O4@surfactants, and could maintain 85% of its initial As(Ⅲ) removal efficiency after five cycles of reuse. This study provides technical support for developing novel magnetically separable nano-sorbent materials effective in removing As(Ⅲ) from water.
史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
SHI Hao, WANG Ya, ZHAO Yuling, LUO Yanli, YANG Fangyuan, ZHOU Jinlong. Study on the Adsorption Characteristics of Heavy Metal by Surfactant-modified Magnetic Nanoparticles. Materials Reports, 2025, 39(6): 23090040-8.
1 Jomova K, Jenisova Z, Feszterova M, et al. Journal of Applied Toxicology, 2011, 31(2), 95. 2 Balali-Mood M, Naseri K, Tahergorabi Z, et al. Frontiers in Pharmacology, 2021, 12, 643972. 3 Ng J C. Environmental Chemistry, 2005, 2(3), 146. 4 Abernathy C O, Liu Y P, Longfellow D, et al. Environmental Health Perspectives, 1999, 107(7), 593. 5 Smith E, Juhasz A L, Weber J, et al. Science of the Total Environment, 2008, 392(2), 277. 6 Thakur M, Rachamalla M, Niyogi S, et al. International Journal of Molecular Sciences, 2021, 22(18), 10077. 7 Tao Z C, Zhou X T, Luo Z Q, et al. Materials Reports, 2016, 30(9), 132 (in Chinese). 陶志超, 周新涛, 罗中秋, 等. 材料导报, 2016, 30(9), 132. 8 Rahman M M, Naidu R, Bhattacharya P. Environmental Geochemistry and Health, 2009, 31, 9. 9 Shaji E, Santosh M, Sarath K V, et al. Geoscience Frontiers, 2021, 12(3), 101079. 10 Ma H, Fang Y, Wu Y N, et al. Materials Reports, 2022, 36(20), 4974 (in Chinese). 马慧, 方月, 吴一楠, 等. 材料导报, 2022, 36(20), 4974. 11 Podgorski J, Berg M. Science, 2020, 368(6493), 845. 12 Rasool A, Xiao T, Farooqi A, et al. Ecological Engineering, 2016, 95, 90. 13 Oehmen A, Valerio R, Llanos J, et al. Separation and Purification Technology, 2011, 83, 137. 14 Bhati M, Rai R. Phytoremediation:Management of Environmental Contaminants, 2018, 6, 441. 15 Harper T R, Kingham N W. Water Environment Research, 1992, 64(3), 200. 16 Ali I, Gupta V K, Khan T A, et al. International Journal of Electrochemical Science, 2012, 7(3), 1898. 17 Algieri C, Pugliese V, Coppola G, et al. Groundwater for Sustainable Development, 2022, 19, 100815. 18 Soni R, Shukla D P. Chemosphere, 2019, 219, 504. 19 Chutia P, Kato S, Kojima T, et al. Journal of Hazardous Materials, 2009, 162(1), 440. 20 Khatamian M, Khodakarampoor N, Saket-Oskoui M. Journal of Colloid and Interface science, 2017, 498, 433. 21 Eguez H E, Cho E H. JOM, 1987, 39(7), 38. 22 Lin T F, Wu J K. Water Research, 2001, 35(8), 2049. 23 Majumder C. Journal of Environmental Engineering, 2018, 144(3), 04017115. 24 Dutta N, Gupta A. Journal of Water Process Engineering, 2022, 49, 103013. 25 Shabestari-Khiabani S, Farshbaf M, Akbarzadeh A, et al. Artificial Cells, Nanomedicine,and Biotechnology, 2017, 45(1), 6. 26 Samanta A, Ravoo B J. Angewandte Chemie International Edition, 2014, 53(47), 12946. 27 Xu L, Kim M J, Kim K D, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 350(1), 8. 28 Liu S, Chen H, Lu X, et al. Angewandte Chemie International Edition, 2010, 49(41), 7557. 29 Lee Y C, Kang I J. Bulletin of the Korean Chemical Society, 2017, 38(3), 313. 30 Guo Z, Li Y, Pan S, et al. Journal of Molecular Liquids, 2015, 206, 272. 31 Anbarasu M, Anandan M, Chinnasamy E, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 135, 536. 32 Periyasamy S, Gopalakannan V, Viswanathan N. Journal of Chemical & Engineering Data, 2018, 63(5), 1286. 33 An B, Cheng K, Wang C, et al. ACS Catalysis, 2016, 6(6), 3610. 34 Challagulla S, Nagarjuna R, Ganesan R, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(3), 974. 35 Sun L, Zhan L, Shi Y, et al. Synthetic Metals, 2014, 187, 102. 36 Neto D M A, Freire R M, Gallo J, et al. The Journal of Physical Chemistry C, 2017, 121(43), 24206. 37 Guo B, Sun J, Hu X, et al. ACS Applied Nano Materials, 2018, 2(1), 40. 38 Wagle D V, Rondinone A J, Woodward J D, et al. Crystal Growth & Design, 2017, 17(4), 1558. 39 Shen L, Li B, Qiao Y. Materials, 2018, 11(2), 324. 40 Liu S, Yu B, Wang S, et al. Advances in Colloid and Interface Science, 2020, 281, 102165. 41 Tan G J. Investigation on flow and heat transfer characteristics of solid particle suspension in a circular tube. Master's Thesis, Guangdong University of Technology, China, 2022 (in Chinese). 覃光军. 固体颗粒悬浮液的管内流动与传热特性研究. 硕士学位论文, 广东工业大学, 2022. 42 Fen Z Z. Study on preparation and properties of few-layer graphene reinforced copper matrix composites. Master's Thesis, South China University of Technology, China, 2019 (in Chinese). 冯泽城. 少层石墨烯增强Cu基复合材料的制备及其性能研究. 硕士学位论文, 华南理工大学, 2019. 43 Zhao Y, Shi H, Du Z, et al. Royal Society Open Science, 2023, 10(1), 220988. 44 Helmi H, Falaki F, Karimi M, et al. Desalination and Water Treatment, 2017, 90, 331. 45 Su S. The design and performance of a new type of magnetically-recoverable “triazole-transition metal” catalys. Master's Thesis, Southwest University of Science and Technology, China, 2016 (in Chinese). 苏松. 一种新型磁性可回收的“三唑环-过渡金属”催化剂的设计及性能研究. 硕士学位论文, 西南科技大学, 2016. 46 Sharma A K, Kaith B S, Panchal S, et al. Journal of Environmental Management, 2019, 231, 380. 47 Kaith B S, Shanker U, Gupta B. Journal of Environmental Management, 2019, 234, 345. 48 Chen S S, Hsu H D, Li C W. Journal of Nanoparticle Research, 2004, 6, 639. 49 Mayo J T, Yavuz C, Yean S, et al. Science and Technology of Advanced Materials, 2007, 8(1), 71. 50 Xie Y, Yuan X, Wu Z, et al. Journal of Colloid and Interface Science, 2019, 536, 440. 51 Su Y, Cui H, Li Q, et al. Water Research, 2013, 47(14), 5018. 52 Sharma A, Lee B K. Applied Surface Science, 2014, 313, 624. 53 Horsfall-Jnr M, Spiff A I. Electronic Journal of Biotechnology, 2005, 8(2), 43. 54 Sundaram C S, Viswanathan N, Meenakshi S. Journal of Hazardous Materials, 2008, 155(1), 206. 55 Ananta S, Saumen B, Vijay V. International Research Journal of Environment Sciences, 2015, 4(1), 64. 56 Jin Y, Liu F, Tong M, et al. Journal of Hazardous Materials, 2012, 227, 461. 57 Khezami L, Capart R. Journal of Hazardous Materials, 2005, 123(1), 223. 58 Yean S, Cong L, Yavuz C T, et al. Journal of Materials Research, 2005, 20(12), 3255. 59 Deng T T, Li H S, Liu Q Y, et al. Environmental Science and Technology, 2021, 44(6), 84 (in Chinese). 邓天天, 李晗晟, 刘千源, 等. 环境科学与技术, 2021, 44(6), 84. 60 Wang T, Qian T W, Zhao D Y, et al. Journal of Shanxi University, 2021, 44(1), 99 (in Chinese). 王婷, 钱天伟, 赵东叶, 等. 山西大学学报, 2021, 44(1), 99.