Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23090040-8    https://doi.org/10.11896/cldb.23090040
  无机非金属及其复合材料 |
表面活性剂改性的磁性纳米颗粒对重金属吸附特征
史豪1, 王雅2, 赵尉伶1, 罗艳丽1, 杨方源3,*, 周金龙4
1 新疆农业大学资源与环境学院,乌鲁木齐 830052
2 伊犁师范大学电子与工程学院,新疆 伊犁 835000
3 新疆农业大学数理学院,乌鲁木齐 830052
4 新疆农业大学水利与土木工程学院,乌鲁木齐 830052
Study on the Adsorption Characteristics of Heavy Metal by Surfactant-modified Magnetic Nanoparticles
SHI Hao1, WANG Ya2, ZHAO Yuling1, LUO Yanli1, YANG Fangyuan3,*, ZHOU Jinlong4
1 College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
2 College of Electronics and Engineering, Yili Normal University, Yili 835000, Xinjiang, China
3 College of Mathematics and Science, Xinjiang Agricultural University, Urumqi 830052, China
4 College of Water Resources and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
下载:  全 文 ( PDF ) ( 20930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别利用四种不同电性的表面活性剂——阴离子表面活性剂SDS、阳离子表面活性剂CTAB,以及两性离子表面活性剂SNC 16和NPC 16——对四氧化三铁表面进行改性,制备得到Fe3O4@SDS、Fe3O4@CTAB、Fe3O4@SNC 16和Fe3O4@NPC 16(统称为“Fe3O4@surfactants”)磁性纳米颗粒,并采用XRD、TEM、FTIR、振动样品磁强计(VSM)和XPS对它们进行表征分析,使用吸附动力学、吸附等温线和吸附热力学探究表面活性剂对Fe3O4的As(Ⅲ)吸附性能的影响。结果表明,Fe3O4@surfactants颗粒近似为球形,平均粒径约10 nm,饱和磁化强度均大于70 emu·g-1,可有效地从溶液中分离。Fe3O4@surfactants对As(Ⅲ)的吸附在60 min内达到平衡,吸附过程符合准二级动力学模型和Freundlich等温线模型,说明其机理是以化学吸附为主的多分子层吸附。在相同条件下,Fe3O4@CTAB对As(Ⅲ)的吸附最强(最大吸附容量为55.174 mg/g),远高于其他复合材料,并且循环使用五次后对As(Ⅲ)的去除率保持在初始值的85%。本工作的结果为开发有效去除水中As(Ⅲ)的新型功能化纳米吸附材料提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史豪
王雅
赵尉伶
罗艳丽
杨方源
周金龙
关键词:  四氧化三铁  表面活性剂  三价砷  纳米材料  吸附    
Abstract: Fe3O4@SDS, Fe3O4@CTAB, Fe3O4@SNC 16, and Fe3O4@NPC 16 (collectively called “Fe3O4@surfactants”) nanoparticles with good adsorption properties were prepared in this work by surface modification of ferric oxide using four kinds of surfactants differing in charge pola-rity, i.e., SDS (anionic surfactant), CTAB (cationic surfactant), and SNC 16 and NPC 16 (amphoteric surfactants). The prepared magnetic nanoparticles were characterized by means of XRD, TEM, FTIR, vibrating-sample magnetometry (VSM), and XPS. The effects of surfactant modification on the performance of magnetic Fe3O4 for adsorbing As(Ⅲ) were investigated by adsorption kinetics, adsorption isotherms, and adsorption thermodynamics. The prepared Fe3O4@surfactants particles were approximately spherical, with average particle sizes of around 10 nm. All the Fe3O4@surfactants had saturation magnetizations larger than 70 emu·g-1, making them magnetically separable from solutions. The adsorption processes of As(Ⅲ) by Fe3O4@surfactants could reach equilibrium within 60 min, and corresponded well with the pseudo-second order kinetic model and the Freundlich isotherm expression, indicating the mechanisms of chemisorption-dominant multi-molecular-layer adsorption. Under the same conditions, Fe3O4@CTAB showed the highest adsorption capacity for As(Ⅲ) (55.174 mg/g), largely superior to the other Fe3O4@surfactants, and could maintain 85% of its initial As(Ⅲ) removal efficiency after five cycles of reuse. This study provides technical support for developing novel magnetically separable nano-sorbent materials effective in removing As(Ⅲ) from water.
Key words:  triiron tetraoxide    surfactant    trivalent arsenic    nanomaterial    adsorption
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TB321  
  X52  
基金资助: 国家自然科学基金(42067053;41761097);新疆维吾尔自治区自然科学基金(2022D01B20);中国博士后科学基金(2020M673643XB);新疆水利工程安全水防灾防治重点实验室2022开放学科项目(ZDSYS-JS-2022-13)
通讯作者:  *杨方源,博士,新疆农业大学数理学院副教授、硕士研究生导师。目前主要从事环境功能材料、超分子材料等方面的研究工作。yangfy@xjau.edu.cn   
作者简介:  史豪,新疆农业大学资源与环境学院硕士研究生。在杨方源副教授的指导下进行研究。目前主要研究领域为纳米材料吸附水中重金属。
引用本文:    
史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
SHI Hao, WANG Ya, ZHAO Yuling, LUO Yanli, YANG Fangyuan, ZHOU Jinlong. Study on the Adsorption Characteristics of Heavy Metal by Surfactant-modified Magnetic Nanoparticles. Materials Reports, 2025, 39(6): 23090040-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23090040  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23090040
1 Jomova K, Jenisova Z, Feszterova M, et al. Journal of Applied Toxicology, 2011, 31(2), 95.
2 Balali-Mood M, Naseri K, Tahergorabi Z, et al. Frontiers in Pharmacology, 2021, 12, 643972.
3 Ng J C. Environmental Chemistry, 2005, 2(3), 146.
4 Abernathy C O, Liu Y P, Longfellow D, et al. Environmental Health Perspectives, 1999, 107(7), 593.
5 Smith E, Juhasz A L, Weber J, et al. Science of the Total Environment, 2008, 392(2), 277.
6 Thakur M, Rachamalla M, Niyogi S, et al. International Journal of Molecular Sciences, 2021, 22(18), 10077.
7 Tao Z C, Zhou X T, Luo Z Q, et al. Materials Reports, 2016, 30(9), 132 (in Chinese).
陶志超, 周新涛, 罗中秋, 等. 材料导报, 2016, 30(9), 132.
8 Rahman M M, Naidu R, Bhattacharya P. Environmental Geochemistry and Health, 2009, 31, 9.
9 Shaji E, Santosh M, Sarath K V, et al. Geoscience Frontiers, 2021, 12(3), 101079.
10 Ma H, Fang Y, Wu Y N, et al. Materials Reports, 2022, 36(20), 4974 (in Chinese).
马慧, 方月, 吴一楠, 等. 材料导报, 2022, 36(20), 4974.
11 Podgorski J, Berg M. Science, 2020, 368(6493), 845.
12 Rasool A, Xiao T, Farooqi A, et al. Ecological Engineering, 2016, 95, 90.
13 Oehmen A, Valerio R, Llanos J, et al. Separation and Purification Technology, 2011, 83, 137.
14 Bhati M, Rai R. Phytoremediation:Management of Environmental Contaminants, 2018, 6, 441.
15 Harper T R, Kingham N W. Water Environment Research, 1992, 64(3), 200.
16 Ali I, Gupta V K, Khan T A, et al. International Journal of Electrochemical Science, 2012, 7(3), 1898.
17 Algieri C, Pugliese V, Coppola G, et al. Groundwater for Sustainable Development, 2022, 19, 100815.
18 Soni R, Shukla D P. Chemosphere, 2019, 219, 504.
19 Chutia P, Kato S, Kojima T, et al. Journal of Hazardous Materials, 2009, 162(1), 440.
20 Khatamian M, Khodakarampoor N, Saket-Oskoui M. Journal of Colloid and Interface science, 2017, 498, 433.
21 Eguez H E, Cho E H. JOM, 1987, 39(7), 38.
22 Lin T F, Wu J K. Water Research, 2001, 35(8), 2049.
23 Majumder C. Journal of Environmental Engineering, 2018, 144(3), 04017115.
24 Dutta N, Gupta A. Journal of Water Process Engineering, 2022, 49, 103013.
25 Shabestari-Khiabani S, Farshbaf M, Akbarzadeh A, et al. Artificial Cells, Nanomedicine,and Biotechnology, 2017, 45(1), 6.
26 Samanta A, Ravoo B J. Angewandte Chemie International Edition, 2014, 53(47), 12946.
27 Xu L, Kim M J, Kim K D, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 350(1), 8.
28 Liu S, Chen H, Lu X, et al. Angewandte Chemie International Edition, 2010, 49(41), 7557.
29 Lee Y C, Kang I J. Bulletin of the Korean Chemical Society, 2017, 38(3), 313.
30 Guo Z, Li Y, Pan S, et al. Journal of Molecular Liquids, 2015, 206, 272.
31 Anbarasu M, Anandan M, Chinnasamy E, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 135, 536.
32 Periyasamy S, Gopalakannan V, Viswanathan N. Journal of Chemical & Engineering Data, 2018, 63(5), 1286.
33 An B, Cheng K, Wang C, et al. ACS Catalysis, 2016, 6(6), 3610.
34 Challagulla S, Nagarjuna R, Ganesan R, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(3), 974.
35 Sun L, Zhan L, Shi Y, et al. Synthetic Metals, 2014, 187, 102.
36 Neto D M A, Freire R M, Gallo J, et al. The Journal of Physical Chemistry C, 2017, 121(43), 24206.
37 Guo B, Sun J, Hu X, et al. ACS Applied Nano Materials, 2018, 2(1), 40.
38 Wagle D V, Rondinone A J, Woodward J D, et al. Crystal Growth & Design, 2017, 17(4), 1558.
39 Shen L, Li B, Qiao Y. Materials, 2018, 11(2), 324.
40 Liu S, Yu B, Wang S, et al. Advances in Colloid and Interface Science, 2020, 281, 102165.
41 Tan G J. Investigation on flow and heat transfer characteristics of solid particle suspension in a circular tube. Master's Thesis, Guangdong University of Technology, China, 2022 (in Chinese).
覃光军. 固体颗粒悬浮液的管内流动与传热特性研究. 硕士学位论文, 广东工业大学, 2022.
42 Fen Z Z. Study on preparation and properties of few-layer graphene reinforced copper matrix composites. Master's Thesis, South China University of Technology, China, 2019 (in Chinese).
冯泽城. 少层石墨烯增强Cu基复合材料的制备及其性能研究. 硕士学位论文, 华南理工大学, 2019.
43 Zhao Y, Shi H, Du Z, et al. Royal Society Open Science, 2023, 10(1), 220988.
44 Helmi H, Falaki F, Karimi M, et al. Desalination and Water Treatment, 2017, 90, 331.
45 Su S. The design and performance of a new type of magnetically-recoverable “triazole-transition metal” catalys. Master's Thesis, Southwest University of Science and Technology, China, 2016 (in Chinese).
苏松. 一种新型磁性可回收的“三唑环-过渡金属”催化剂的设计及性能研究. 硕士学位论文, 西南科技大学, 2016.
46 Sharma A K, Kaith B S, Panchal S, et al. Journal of Environmental Management, 2019, 231, 380.
47 Kaith B S, Shanker U, Gupta B. Journal of Environmental Management, 2019, 234, 345.
48 Chen S S, Hsu H D, Li C W. Journal of Nanoparticle Research, 2004, 6, 639.
49 Mayo J T, Yavuz C, Yean S, et al. Science and Technology of Advanced Materials, 2007, 8(1), 71.
50 Xie Y, Yuan X, Wu Z, et al. Journal of Colloid and Interface Science, 2019, 536, 440.
51 Su Y, Cui H, Li Q, et al. Water Research, 2013, 47(14), 5018.
52 Sharma A, Lee B K. Applied Surface Science, 2014, 313, 624.
53 Horsfall-Jnr M, Spiff A I. Electronic Journal of Biotechnology, 2005, 8(2), 43.
54 Sundaram C S, Viswanathan N, Meenakshi S. Journal of Hazardous Materials, 2008, 155(1), 206.
55 Ananta S, Saumen B, Vijay V. International Research Journal of Environment Sciences, 2015, 4(1), 64.
56 Jin Y, Liu F, Tong M, et al. Journal of Hazardous Materials, 2012, 227, 461.
57 Khezami L, Capart R. Journal of Hazardous Materials, 2005, 123(1), 223.
58 Yean S, Cong L, Yavuz C T, et al. Journal of Materials Research, 2005, 20(12), 3255.
59 Deng T T, Li H S, Liu Q Y, et al. Environmental Science and Technology, 2021, 44(6), 84 (in Chinese).
邓天天, 李晗晟, 刘千源, 等. 环境科学与技术, 2021, 44(6), 84.
60 Wang T, Qian T W, Zhao D Y, et al. Journal of Shanxi University, 2021, 44(1), 99 (in Chinese).
王婷, 钱天伟, 赵东叶, 等. 山西大学学报, 2021, 44(1), 99.
[1] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[2] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[3] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[4] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[5] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[6] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[7] 鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
[8] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[9] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[10] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[11] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[12] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[13] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[14] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[15] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed