Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010153-8    https://doi.org/10.11896/cldb.24010153
  无机非金属及其复合材料 |
金属有机框架及碳基材料在室内有机污染物控制中的研究进展
杨明1,2, 孙杰1,2,3, 王金泽4, 崔占朋1,2, 吴敏1,2, 杜伟1,2,*
1 昆明理工大学环境科学与工程学院,昆明 650504
2 云南省土壤固碳与污染控制重点实验室,昆明 650500
3 西南联合研究生院,昆明 650092
4 北京大学城市与环境学院,地表过程分析与模拟教育部重点实验室,北京 100871
Research Progress of Metal-Organic Framework and Carbon-based Materials for Indoor Organic Pollutants Control
YANG Ming1,2, SUN Jie1,2,3, WANG Jinze4, CUI Zhanpeng1,2, WU Min1,2, DU Wei1,2,*
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
2 Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
3 Southwest United Graduate School, Kunming 650092, China
4 Laboratory for Earth Surface Processes Ministry of Education , College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
下载:  全 文 ( PDF ) ( 3834KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 室内空气污染已被公认为是影响人类健康的重要因素,因此控制室内空气污染对人体健康具有重要意义。金属有机框架和碳基材料在治理室内空气污染中展示了良好的潜力。本文综述了金属有机框架和碳基材料作为吸附剂和光催化剂在室内空气污染控制中的研究进展,详细讨论了活性炭、生物炭、活性炭纤维、金属有机框架、石墨烯及石墨烯衍生物和石墨相氮化碳在室内空气污染控制中的利用现状,厘清了吸附材料和光催化材料在治理室内挥发性有机物和颗粒物中的效果,并探讨了其影响因素及存在问题。针对金属有机框架和碳基材料目前存在的问题,提出了金属有机框架和碳基材料在室内空气污染控制方面的发展方向,这将有助于开发廉价高效的吸附材料和光催化材料,为实现室内空气污染控制提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨明
孙杰
王金泽
崔占朋
吴敏
杜伟
关键词:  室内空气污染  金属有机框架材料  碳基材料  吸附  光催化    
Abstract: Indoor air pollutants have been recognized as important factors affecting human health, making the control of indoor air pollution of great significance for human health protection. Metal-organic frameworks and carbon-based materials are widely used materials in a variety of fields, which show promising potential in the control of indoor air pollution. In this paper, systematic review was conducted to reveal the research progress and current state of using metal-organic frameworks and carbon-based materials as adsorbents and photocatalysts in the control of indoor air pollution. Commonly used metal-organic frameworks and carbon-based materials in indoor air pollution control included activated carbon, biochar, activated carbon fiber, metal-organic framework, graphene and graphene derivatives, as well as graphite phase carbon nitride. The removal efficiency of these materials for indoor volatile organic compounds and particles was clarified, and the influencing factors and main existing problems were further discussed. The future development of metal-organic frameworks and carbon-based materials was proposed, which will help to develop cheap and efficient adsorption materials and photocatalytic materials and provide technical support for indoor air pollution control.
Key words:  indoor air pollution    metal-organic framework material    carbon-based material    adsorption    photocatalysis
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  X511  
  TB33  
基金资助: 云南省基础研究专项-面上项目(202301AT070331);云南省西南联合研究生院科技专项(202302AO370001);国家自然科学基金面上项目(42377250)
通讯作者:  *杜伟,昆明理工大学环境与科学工程学院教授(特聘)、硕士研究生导师。目前主要从事环境与健康等方面的研究工作。duwpku@gmail.com   
作者简介:  杨明,现为昆明理工大学环境与科学工程学院硕士研究生,目前主要研究领域为室内空气污染与人体健康。
引用本文:    
杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
YANG Ming, SUN Jie, WANG Jinze, CUI Zhanpeng, WU Min, DU Wei. Research Progress of Metal-Organic Framework and Carbon-based Materials for Indoor Organic Pollutants Control. Materials Reports, 2025, 39(4): 24010153-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010153  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010153
1 Shimada Y, Matsuoka Y. Science of the Total Environment, 2011, 409(24), 5243.
2 Marc M, Smielowska M, Namiesnik J, et al. Environmental Science and Pollution Research, 2018, 25(3), 2065.
3 Peng Z, Deng W, Tenorio R. Sustainability, 2017, 9(7), 1180.
4 Sheehan P, Singhal A, Bogen K T, et al. Risk Analysis, 2018, 38(6), 1128.
5 Grigoryan H, Edmands W M B, Lan Q, et al. Carcinogenesis, 2018, 39(5), 661.
6 Wang F, Chen D, Wu P, et al. Chemical Research in Toxicology, 2019, 32(5), 820.
7 World Health Organization. Household air pollution. https://www.who.int/zh/news-room/fact-sheets/detail/household-air-pollution-and-health.
8 Zou W X, Gao B, Ok Y S, et al. Chemosphere, 2019, 218, 845.
9 Wang J, Kong H, Zhang J, et al. Progress in Materials Science, 2021, 116, 100717.
10 Liu B, Xu W, Tao J, et al. Advanced Energy Materials, 2018, 8(11), 1702340.
11 Gopinath K P, Vo D V N, Gnana Prakash D, et al. Environmental Chemistry Letters, 2021, 19(1), 557.
12 Mahmoodi N M, Oveisi M, Taghizadeh A, et al. Journal of Hazardous Materials, 2019, 368, 746.
13 Shi G, Ruan C, He S, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 163, 126053.
14 Chen B, Cao Y, Zhao H, et al. Journal of Hazardous Materials, 2020, 392, 122263.
15 Liu P, Yu Q, Xue Y, et al. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(2), 813.
16 Zhang C F. Surface functional modification of carbon-based materials and mechanism for removing VOCs. Master’s Thesis, University of Chinese Academy of Sciences, China, 2022 (in Chinese).
张超锋. 碳基材料表面功能化改性及去除VOCs机制. 硕士学位论文, 中国科学院大学, 2022.
17 Gholami P, Khataee A, Soltani R D C, et al. Journal of Hazardous Materials, 2020, 382, 121070.
18 Khataee A, Rad T S, Nikzat S, et al. Chemical Engineering Journal, 2019, 375, 122102.
19 Rad T S, Ansarian Z, Soltani R D C, et al. Journal of Hazardous Materials, 2020, 399, 123062.
20 Nguyen Thi Thanh T, Thanh-Dong P, Doan Van T, et al. Journal of Alloys and Compounds, 2019, 798, 12.
21 Hou B, Chen S M, Jiang B, et al. Safety and Environmental Engineering, 2021, 28(1), 197 (in Chinese).
侯博, 陈思铭, 江波, 等. 安全与环境工程, 2021, 28(1), 197.
22 Zhu L L, Shen K D, Luo K H. Journal of Hazardous Materials, 2020, 389, 122102.
23 Manap N R A, Shamsudin R, Maghpor M N, et al. Journal of Environmental Chemical Engineering, 2018, 6(1), 970.
24 Shen Y, Zhang N. Bioresource Technology, 2019, 282, 294.
25 Shen Y, Zhang N, Fu Y. Journal of Environmental Management, 2019, 241, 53.
26 Jafari S, Ghorbani-Shahna F, Bahrami A, et al. Microporous and Mesoporous Materials, 2018, 268, 58.
27 Yang X N, Ren X L, Yan X Q, et al. Materials Reports, 2021, 35(17), 17111 (in Chinese).
杨晓娜, 任晓玲, 严孝清, 等. 材料导报, 2021, 35(17), 17111.
28 Isinkaralar K, Turkyilmaz A, Lakestani S. Environmental Technology and Innovation, 2023, 31, 103209.
29 Hu S, Chen Y, Lin X, et al. Environmental Science and Pollution Research, 2018, 25(28), 28525.
30 Stefanowski B K, Curling S F, Ormondroyd G A. Industrial Crops and Products, 2017, 98, 25.
31 Lin L L. Activated carbon for removing formaldehyde from air. Master’s Thesis, East China University of Science and Technology, China, 2014 (in Chinese).
林莉莉. 活性炭吸附气相甲醛的研究. 硕士学位论文, 华东理工大学, 2014.
32 Isinkaralar K, Gullu G, Turkyilmaz A. Biomass Conversion and Biorefinery, 2022, 13(5), 4279.
33 Hu L, Cheng W, Zhang W, et al. Journal of Porous Materials, 2017, 24(2), 541.
34 Shi G, He S, Chen G, et al. Chemical Engineering Journal, 2022, 428, 131148.
35 Boonamnuayvitaya V, Sae-Ung S, Tanthapanichakoon W. Separation and Purification Technology, 2005, 42(2), 159.
36 Wen Q B, Li C T, Cai Z H, et al. China Environmental Science, 2010, 30(06), 727 (in Chinese).
文青波, 李彩亭, 蔡志红, 等. 中国环境科学, 2010, 30(6), 727.
37 Hu L, Peng Y, Wu F, et al. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 399.
38 Kumagai S, Sasaki K, Shimizu Y, et al. Separation and Purification Technology, 2008, 61(3), 398.
39 Chen Y, Huang Y, Wang C, et al. Journal of the Air and Waste Management Association, 2020, 70(6), 616.
40 Duan C, Meng M, Huang H, et al. Materials Chemistry and Physics, 2023, 295, 127130.
41 Li S J, Huang H J, Shang L L, et al. Materials Reports, 2021, 35(S2), 75 (in Chinese).
李世杰, 黄慧娟, 尚莉莉, 等. 材料导报, 2021, 35(S2), 75.
42 Wang S S, Zhang L, Long C, et al. Journal of Colloid and Interface Science, 2014, 428, 185.
43 Suzuki R M, Andrade A D, Sousa J C, et al. Bioresource Technology, 2007, 98(10), 1985.
44 Zhang Y X, Gao B, Creamer A E, et al. Journal of Hazardous Materials, 2017, 338, 102.
45 Tong Y, Mcnamara P J, Mayer B K. Environmental Science-Water Research and Technology, 2019, 5(5), 821.
46 Yue X, Ma N L, Sonne C, et al. Journal of Hazardous Materials, 2021, 405, 124138.
47 Rajabi H, Mosleh M H, Prakoso T, et al. Chemosphere, 2021, 283, 131288.
48 Ahn Y, Cho D W, Ahmad W, et al. Journal of Environmental Management, 2021, 298, 113468.
49 Zhang X, Gao B, Zheng Y, et al. Bioresource Technology, 2017, 245, 606.
50 Vikrant K, Kim K H, Peng W, et al. Chemical Engineering Journal, 2020, 387, 123943.
51 Zhuang Z, Wang L, Tang J. Journal of Hazardous Materials, 2021, 406, 124676.
52 Shen Y, Zhang N. Bioresource Technology, 2019, 282, 294.
53 Xiang W, Zhang X, Chen K, et al. Chemical Engineering Journal, 2020, 385, 123842.
54 Ji Y M, Wu Y L, Ma W T, et al. New Chemical Materials, 2020, 48(S1), 32 (in Chinese).
纪咏梅, 吴亚玲, 马文涛, 等. 化工新型材料, 2020, 48(S1), 32.
55 Son H K, Sivakumar S, Rood M J, et al. Journal of Hazardous Materials, 2016, 301, 27.
56 Baur G B, Yuranov I, Kiwi-Minsker L. Catalysis Today, 2015, 249, 252.
57 Xie Z Z, Wang L, Cheng G, et al. Journal of the Air and Waste Management Association, 2016, 66(12), 1224.
58 Machowski K, Natkanski P, Bialas A, et al. Journal of Thermal Analysis and Calorimetry, 2016, 126(3), 1313.
59 Yang S, Zhu Z, Wei F, et al. Building and Environment, 2017, 125, 60.
60 Huang Y C, Luo C H, Yang S, et al. Clean-Soil Air Water, 2010, 38(11), 993.
61 Wee J H, Bae Y, Ahn H, et al. Carbon Letters, 2022, 32(4), 1111.
62 Yang S, Zhu Z, Wei F, et al. Building and Environment, 2017, 126, 27.
63 Sidheswaran M A, Destaillats H, Sullivan D P, et al. Building and Environment, 2012, 47, 357.
64 Wang H, Zu D, Jiang X, et al. Advanced Fiber Materials, 2023, 5(6), 1934.
65 Ryu D Y, Shimohara T, Nakabayashi K, et al. Journal of Industrial and Engineering Chemistry, 2019, 80, 98.
66 Dan D, Mao X J, Wu Q C, et al. Shanghai Dyestuffs, 2023, 51(5), 28 (in Chinese).
单栋, 毛新军, 吴齐超, 等. 上海染料, 2023, 51(5), 28.
67 He Y, Dong W, Li X, et al. Journal of Colloid and Interface Science, 2020, 574, 364.
68 Dong W, Wang D, Wang H, et al. Journal of Colloid and Interface Science, 2019, 535, 444.
69 Dai X J, Feng S, Wu W, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32(7), 2371.
70 Entezami N, Farhadian M, Nazar A R S, et al. Process Safety and Environmental Protection, 2022, 164, 747.
71 Xiao X, Zou L, Pang H, et al. Chemical Society Reviews, 2020, 49(1), 301.
72 Dang S, Zhu Q L, Xu Q. Nature Reviews Materials, 2018, 3(1), 17075.
73 Xu Y, Li Q, Xue H, et al. Coordination Chemistry Reviews, 2018, 376, 292.
74 Zhan W, Sun L, Han X. Nano-micro Letters, 2019, 11(1), 1.
75 Li R, Zhang W, Zhou K. Advanced Materials, 2018, 30(35), 1705512.
76 Ahmad A, Ali M, Al-Sehemi A G, et al. Chemical Engineering Journal, 2023, 452, 139436.
77 Qian Y, Ma D, Zhong J. Frontiers in Chemistry, 2021, 9, 749839.
78 Tu S H, Zhong R F, Zhang C, et al. Materials Reports, 2024, 38(16), 23030150 (in Chinese).
涂盛辉, 钟荣福, 张超, 等. 材料导报, 2024, 38(16), 23030150.
79 Duan J, He X, Ma Z, et al. Microporous and Mesoporous Materials, 2022, 336, 111892.
80 Huang Q, Hu Y, Pei Y, et al. Applied Catalysis B-Environmental, 2019, 259, 118106.
81 Wang T, Wang Y, Sun M, et al. Chemical Science, 2020, 11(26), 6670.
82 Yang Z, Zhang J, Wang J, et al. Chemosphere, 2022, 296, 133291.
83 Zhou Y, Ouyang W L, Wang Y J, et al. Journal of Physical Chemistry, 2021, 37(8), 107 (in Chinese).
周易, 欧阳威龙, 王岳军, 等. 物理化学学报, 2021, 37(8), 107.
84 Li P, Kim S, Jin J, et al. Applied Catalysis B-Environmental, 2020, 263, 118284.
85 Zhang J, Hu Y, Qin J, et al. Chemical Engineering Journal, 2020, 385, 123814.
86 Shah S J, Wang R, Gao Z, et al. Chemical Engineering Journal, 2021, 411, 128590.
87 Gao Z, Wang J, Muhammad Y, et al. Chemical Engineering Journal, 2020, 388, 124389.
88 Park H, Park Y, Kim W, et al. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2013, 15, 1.
89 Zhang H Q, Guo Y B, Chen Y M, et al. Chinese Chemical Bulletin, 2023, 86(11), 1313 (in Chinese).
张慧琴, 郭月滨, 陈艳梅, 等. 化学通报, 2023, 86(11), 1313.
90 Wang X, Yin L, Liu G. Chemical Communications, 2014, 50(26), 3460.
91 Adamu H, Dubey P, Anderson J A. Chemical Engineering Journal, 2016, 284, 380.
92 Zhang H, Lv X, Li Y, et al. Acs Nano, 2010, 4(1), 380.
93 Ali M, Anjum A S, Bibi A, et al. Carbon, 2022, 196, 649.
94 Ali M, Riaz R, Anjum A S, et al. Carbon, 2021, 171, 493.
95 Chen J. Synthesis and structural control of graphene oxide. Ph. D. Thesis, Tsinghua University, China, 2016 (in Chinese).
陈骥. 氧化石墨烯的制备及结构控制. 博士学位论文, 清华大学, 2016.
96 Yu L, Wang L, Sun X, et al. Journal of Environmental Sciences, 2018, 73, 138.
97 Liu F, Gao X, Peng M. Separations, 2022, 9(2), 31.
98 Chen W, Chen J, Zhang J, et al. Materials Research Express, 2019, 6(10), 105503.
99 Tai X H, Lai C W, Yang T C K, et al. Journal of Environmental Chemical Engineering, 2022, 10(4), 108047.
100 Tai X H, Chook S W, Lai C W, et al. RSC Advances, 2019, 9(31), 18076.
101 Shi Q, Zhao W, Xie L, et al. Journal of Alloys and Compounds, 2016, 662, 108.
102 Winayu B N R, Chou C C, Chu H. Journal of the Taiwan Institute of Chemical Engineers, 2022, 139, 104529.
103 Lu C, Gou Z, Li S, et al. Green Processing and Synthesis, 2022, 11(1), 195.
104 Xu Y, Liu C B, Zheng L Z, et al. Materials Reports, 2024, 38(21), 23060180 (in Chinese).
徐杨, 刘成宝, 郑磊之, 等. 材料导报, 2024, 38(21), 23060180.
105 Xu L, Qi L, Han Y, et al. Chemical Engineering Journal, 2022, 430, 132828.
106 Li Y, Zhou M, Cheng B, et al. Journal of Materials Science and Technology, 2020, 56, 1.
107 Yu Q L, Liu C B, Jin T, et al. Materials Reports, 2024, 38(11), 22090279 (in Chinese).
于巧玲, 刘成宝, 金涛, 等. 材料导报, 2024, 38(11), 22090279.
108 Ong W J, Tan L L, Ng Y H, et al. Chemical Reviews, 2016, 116(12), 7159.
109 He L, Fei M, Chen J, et al. Materials Today, 2019, 22, 76.
110 Dong G, Zhang Y, Pan Q, et al. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2014, 20, 33.
111 Wang A, Wang C, Fu L, et al. Nano-Micro Letters, 2017, 9(4), 47.
112 Lu C, Chen R, Wu X, et al. Applied Surface Science, 2016, 360, 1016.
113 Fu J, Zhu B, Jiang C, et al. Small, 2017, 13(15), 1603938.
114 Zhu Y P, Ren T Z, Yuan Z Y. ACS Applied Materials and Interfaces, 2015, 7(30), 16850.
115 Wang K, Li Q, Liu B, et al. Applied Catalysis B-Environmental, 2015, 176, 44.
116 Jin Q, Xiang Y, Gan L. Catalysts, 2023, 13(2), 238.
117 Rao X, Dou H, Long D, et al. Chemosphere, 2020, 244, 125462.
118 Kong L, Li X, Song P, et al. Chemical Physics Letters, 2021, 762, 138132.
119 Wang W, Zhang D, Ji Z, et al. Optical Materials, 2021, 111, 110721.
120 Li X, Qian X, An X, et al. Applied Surface Science, 2019, 487, 1262.
121 Liu S H, Lin W X. Journal of Hazardous Materials, 2019, 368, 468.
122 Li Y W, Li S Z, Zhao M B, et al. Separation and Purification Technology, 2023, 327, 124966.
123 Qiu P, Chen H, Xu C, et al. Journal of Materials Chemistry A, 2015, 3(48), 24237.
124 Hao R, Wang G, Jiang C, et al. Applied Surface Science, 2017, 411, 400.
125 Mamaghani A H, Haghighat F, Lee C S. Applied Catalysis B-Environmental, 2017, 203, 247.
126 Wu C. Applied Surface Science, 2014, 319, 237.
127 He Z, Xiong J, Kumagai K, et al. Environment International, 2019, 132, 105086.
[1] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[2] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[3] 鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
[4] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[5] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[6] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[7] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[8] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[9] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[10] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[11] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[12] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[13] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[14] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[15] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed